Pharmacokinetic models are applied to determine the drug distribution in the organism with respect to a given administration. Models based on body anatomy and physiology can provide an accurate description of drug concentrations reached in specific organs and tissues of mammals. This article proposes a model based on mammalian anatomy and physiology to predict the biodistribution in mice of sorafenib, an anti-cancer drug, with specific attention to the concentration reached in the liver, as that is the action site in case of hepatocellular carcinoma treatment. The model reveals a close correspondence respect to experimental concentration data in the organism and also assesses with good fidelity the enterohepatic circulation, a phenomenon occurring at the liver-intestine level and that strongly characterizes sorafenib distribution.