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• There are at least three distinct fields that characterize the optimization of 
industrial processes

– Management
• Project assessment
• Selecting the optimal product
• Deciding whether to invest in research or in production
• Investment in new plants
• Supervision of multiple production sites

– Design
• Process design and Equipment design
• Equipment specifications
• Nominal operating conditions

– Operation
• Plant operation
• Process control
• Use of raw materials
• Minimizing energy consumption
• Logistics (storage, shipping, transport) → Supply Chain Management

Optimization
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• The optimization problem is characterized by:

– Objective function

– Equality constraints (optional)

– Inequality constraints (optional)

• The constraints may be:

– Linear
– Nonlinear

– Violable

– Not violable

– Real constraints

– Lower and upper bounds of the degrees of freedom

• The optimization variables are defined as: degrees of freedom (dof)

• Mathematically we have:
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Linear function and constraints
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Linear function and constraints
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Nonlinear function and constraints
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Nonlinear function and constraints
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Nonlinear function and constraints
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Nonlinear constraints + lower/upper bounds
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Infeasible region
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• The equality and inequality constraints may also include the model of the process

to be optimized and the law limits, process specifications and degrees of freedom.

• The constraints identify a “feasibility” region where the degrees of freedom can be

modified to look for the optimum.

• The constraints have to be consistent in order to define a “feasible” searching

area.

• There isn’t any theoretical limit to the number of inequality constraints.

• If the number of equality constraints is equal to the number of degrees of

freedom the only possible solution coincides with the optimal point. If there are

multiple solutions of the nonlinear system, in order to obtain the absolute

optimum, we will need to identify all the solutions and evaluate the objective

function at each point, and eventually select the point that produces the best

result.

Constraints
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• If there are more variables than equality constraints then the problem is

UNDERDETERMINED and we must proceed to the effective search of the

optimum point of the objective function.

• If there are more equality constraints than degrees of freedom then the problem

is OVERDETERMINED and there is NOT a solution that satisfies all the constraints.

This is a typical example of data reconciliation.

Constraints
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• If both the objective function and constraints are linear, the problem is called 

LINEAR PROGRAMMING (LP)

• If the objective function and/or the constraints are NOT linear with respect to 

the degrees of freedom, the problem is called NOT linear (NLP)

• A NLP is more complicated than a LP

• A LP has a unique solution only if it is feasible

• A NLP may have multiple local minima

• The research for the absolute optimum can be quite complicated

• Often we are NOT interested in the absolute optimum, especially if we are 

performing an online process optimization

• The research of the optimum point is influenced by the possible discontinuities 

of the objective function and/or constraints

• If there is a functional dependency among the dof, the optimization is strongly 

affected and the numerical method can fail. For example: 
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• Usually the objective function is based on an economic assessment of the 

involved problem. For instance:

(revenues – costs), 

• Also, the objective function may be based on other criteria such as: 

• pollutant minimization

• conversion maximization

• yield, reliability, response time, efficiency

• energy production

• environmental impact

• With reference to the process, if we consider only the operating costs and the 

investment costs are neglected, then we have to solve the so called 

SUPERVISION problems (aka CONTROL in SUPERVISION)

Structure of the objective function
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• If we consider both operating and investment costs then we fall in the field of 

“Conceptual Design” and “Dynamic Conceptual Design”.

• Since in CD and DCD the CAPEX terms [€] and OPEX terms [€/y] are not directly 

comparable (due to the different units of measure) a suitable comparison basis 

must be found. This can be the “discounted back” approach together with the 

annualized approach to CAPEX assessment where the depreciation period 

allows transforming the CAPEX contribution from [€] to [€/y].
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Introductory examples
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PROCESS DATA 1) A + B → E

2) A + B → F

3) 3A + 2B + C → G

RAW MATERIALS

Component Availability, kg/d Cost, €/kg

A 40,000 1.5

B 30,000 2.0

C 25,000 2.5

PRODUCTS

Process Product Reactant required 
for [kg] of product

Processing costs Selling price

1 E 2/3 A, 1/3 B 1.5 €/kg E 4.0 €/kg E

2 F 2/3 A, 1/3 B 0.5 €/kg F 3.3 €/kg F

3 G 1/2 A, 1/6 B, 1/3 C 1.0 €/kg G 3.8 €/kg G

A

B

C

x1

x2

x3

Process 1

Process 2

Process 3

E

x4

F

x5

G

x6

Example #1: Operating profit
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Statement: We want to find the maximum daily profit.
The dof are the flowrates of the single components [kg/d]

• Profit from selling the products [€/d]

4x4 + 3.3x5 + 3.8x6

• Cost of raw materials [€/d]

1.5x1 + 2.0x2 + 2.5x3

• Operating costs [€/d]

1.5x4 + 0.5x5 + 1.0x6

• Objective function

f(x) = 4x4 + 3.3x5 + 3.8x6 - 1.5x1 - 2.0x2 - 2.5x3 - 1.5x4 - 0.5x5 +

- 1.0x6 = 2.5x4 – 2.8 x5 + 2.8 x6 – 1.5 x1 – 2x2 – 2.5x3

• Constraints on material balances

x1 = 2/3 x4 + 2/3 x5 + 1/2 x6

x2 = 1/3 x4 + 1/3 x5 + 1/6 x6

x3 = 1/3 x6

Example #1: Operating profit
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• Upper & lower limits on the dof

0  x1  40,000

0  x2  30,000

0  x3  25,000

• The problem is LINEAR in the objective function and constraints.

• We use LINEAR PROGRAMMING techniques (e.g., the simplex method) to solve 

the optimization problem. Since the objective function is a hyperplane with a 

research area bounded by hyper-lines (i.e. equality and inequality linear 

constraints) the optimal solution is on the intersection of constraints and more 

specifically of equality constraints.

Example #1: Operating profit
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Statement:

We want to determine the optimal ratio, L/D, for a given cylindrical pressurized 
vessel with a given volume, V.

Hypotheses:

The extremities are closed and flat.

Constant wall thickness t.

The thickness t does not depend on the pressure.

The density  of the metal does not depend on the pressure.

Manufacturing costs M [€/kg] are equal for both the side walls and the bottoms. 

There are not any production scraps

Unrolling:

We can write three equivalent objective functions:
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Example #2: Investment costs
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By using the specification on the volume V:

By differentiating we obtain:

Then:

N.B.: by modifying the assumptions and considering the bottoms characterized by 

an ellipsoidal shape with higher manufacturing cost, the thickness being also a 

function of the diameter D, the pressure, and the corrosivity of the liquid, we 

get a different optimal L/D :
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Example #2: Investment costs
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Statement: we want to determine the optimal thickness s of the insulator for a large 

diameter pipe and a high internal heat exchange coefficient. We need to find a 

compromise between the energy savings and the investment cost for the installation 

of the refractory material.

• Heat exchanged with the environment in presence of the refractory:

Q = U A T = A T / (1/he+s/k)

• Cost of installation of the refractory material [€/m2]

F0 + F1 s

• The insulator has a five-year life. The capital for the purchase and installation is 
borrowed. r is the percentage of the capital + interests to be repaid each year. It 
follows that r > 0.2

• Ht is the cost of the energy losses [€/kcal]

• Y are the working hours in a year [h/y]

• Each year we must return to the bank which provided the loan:

(F0 + F1 s ) A r [€/y]

Example #3: CAPEX + OPEX
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• Heat exchanged with the environment without the refractory material:

Q = U A T = he A T

• Annual energy savings due to the refractory:

[he A T - A T / (1/he+s/k)] Ht Y [€/y]

• The objective function in the dof s becomes:

fobj = [he A T - A T / (1/he+s/k)] Ht Y – (F0 + F1 s) A r 

• The problem is solved analytically by calculating:

d fobj / ds = 0

• We obtain:

sopt = k [((T Ht Y)/(k F1 r))½ - 1/he] 

• Note that sopt depends neither on A nor on F0

Example #3: CAPEX + OPEX
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Methods for multidimensional 
unconstrained optimization
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• There is a necessary condition to be fulfilled for the optimal point:

that is the gradient of f(x) must be zero (this is not true for cusp points and 

more in general for discontinuous functions)

• Sufficient condition for the minimum is that:                         the Hessian matrix of 

f(x) must be positive definite.

• There are three distinct classes of methods that differ in the use of the 

derivatives of the objective function during the search for the minimum:

• HEURISTIC methods do not use the derivatives of f(x). They are more 

robust because they are slightly if not at all affected by the discontinuities 

of the problem to be solved.

• FIRST ORDER methods work with the first order partial derivatives of f(x) 

i.e. the GRADIENT of the objective function.

• SECOND ORDER methods use also the second order partial derivatives of 

f(x) i.e. the HESSIAN of the objective function.

0)( * = xf

0)( *2  xf

Multidimensional unconstrained optimization
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• The numerical algorithms are intrinsically iterative and usually perform a series 

of direction searches. At the k-th iteration we have the k-th direction sk and the 

method minimizes f(x) along sk.

• DIRECT or HEURISTIC methods:

• Random search (Monte Carlo)

• Grid search (heavy but exhaustive)

• Univariate search we identify n directions (where n is the number of dof) 
with respect to which we perform the optimization iteratively.

x0

xOpt

Multidimensional unconstrained optimization

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 26



L5—

Simplex method (Nelder & Mead, 1965)

• The simplex is a geometric figure having n+1 vertices for n dof. We identify the worst 
vertex (i.e. having the highest value for f(x)) and we reverse it symmetrically with 
respect to the center of gravity of the remaining n-1 vertices. We identify a new 
simplex respect to which continue the search. The overturning of the simplex may be 
subject to expansion or contraction according to the actual situation.

Multidimensional unconstrained optimization
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Conjugate directions method

Considering a quadratic approximation of the objective function it is possible to 
identify its conjugate directions.

Hp.: f(x) is quadratic

1. x0 generic

2. s generic

3. xa minimum on s

4. x1 generic

5. t parallel to s

6. xb minimum on s

7. u from joining xa and xb

u is the conjugated direction with respect to s and t and by minimizing it we 
identify the optimal point xopt of f(x) (for that quadratic approximation).

x0

x1

xa

xb

xopt

s

t

u

Multidimensional unconstrained optimization
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First order indirect methods

A possible candidate search direction s must decrease the function f(x). It must 
satisfy the condition: 

In fact:

only if:

The gradient method selects the gradient of the objective function (in the 

opposite direction) as the search direction.

The idea of moving in the direction of the maximum slope (i.e. “Steepest 
Descent”) may be not optimal.

0)(  sfT
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)(xf
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Multidimensional unconstrained optimization
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Gradient method

Easy search

Difficult search
x0

x0

xopt

Multidimensional unconstrained optimization

xopt
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Second-order indirect methods

They exploit the second-order partial derivatives of the objective function.

By implementing the Taylor series truncated at the second term and equating the 

gradient to zero we get:

Consequently, it must be:

N.B.: the Hessian matrix is not inverted, we solve the resulting linear system via 

the LU factorization.

In addition, the Hessian matrix is NOT calculated directly as it would be costly 
regarding CPU time. 

On the contrary, the BFGS formulas (Broyden, Fletcher, Goldfarb, Shanno) allow 
starting from an initial estimation of H (often the identity matrix) and with the 
gradient of f(x) they evaluate iteratively H(x).

The corresponding numerical methods are: 
Newton, Newton modified: Levemberg-Marquardt, Gill-Murray.

0)()( =+ kkkf xxHx

)()(1

1 kkkk f xxHxx −= −

+

Multidimensional unconstrained optimization
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Some peculiar objective functions
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Some peculiar objective functions
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Some peculiar objective functions
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Methods for multidimensional
constrained optimization
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• The objective function and the equality and inequality constraints are all LINEAR. 

Thus, the objective function is neither concave nor convex. Actually, it is either a 

plane (2D) or a hyperplane (with n dof).

If the region identified by the constraints is consistent we have to solve a problem 

(“feasible”) that will take us on the way to the constraints and more specifically 

towards their intersection.

• Simplex Method LP

12

10

8
6

4

xOpt

x0

It is first necessary to identify a 

starting point that belongs to the 

“feasible” region.

Then we move along the sequence of 

constraints until we reach the optimal 

point.

The problem may also NOT have a 

“feasible” region of research.

Linear Programming
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Method of the Lagrange multipliers

The inequality constraints,                 , if violated, are rewritten as equality 

constraints by introducing the slack variables: 0)( 2 =−xg

( ) 0g x

Nonlinear Programming
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Method of the Lagrange multipliers

The objective function is reformulated to contain both the equality and inequality 

constraints:

There are necessary and sufficient conditions to identify the optimal point that 

simultaneously satisfies the imposed constraints.

It is easy to see how the problem dimensionality increases.

2

1 1

( , , ) ( ) ( ) ( )
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i i i i i

i i NEC
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Nonlinear Programming
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Penalty Function method

We change the objective function by summing some penalty terms that quantify 

the violation of inequality and equality constraints:

More generally: 

 ( )2  ( ) ( ) min 0, ( )Min f h g + +x x x
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Nonlinear Programming
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SQP method  (Successive Quadratic Programming)

The objective function f(x) is approximated iteratively with a quadratic function, 

while the constraints are linearized and added to the objective function:

the search for the optimal point is made along a direction s (identified by the 

vector x) over which the objective function and constraints have been formulated.

Matrix B is an approximation of the Hessian matrix H and is calculated with the 

BFGS formulas (Broyden, Fletcher, Goldfarb, Shanno).
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Case-study #1

On-line optimization of
continuous processes
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Waste to energy plant with DeNOx catalytic section

On-line optimization of continuous processes

D. Manca, M. Rovaglio, G. Pazzaglia, G. Serafini. Comp. & Chem. Eng., 22(12), 1879-1896, (1998)
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• Requirements of the optimization procedure

• Economic optimization of the process: 

• maximize the steam production and therefore the electrical energy. 

• Minimize the operating costs

• Respect the process constraints for a correct plant operation

• Respect the law constraints

• Alternatively

• Minimize the production of micropollutants

• Reduce environmental impact

• Optimal mixing of wastes having different nature

On-line optimization of continuous processes
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Objective function to be maximized

Degrees of freedom
Waste flowrate Total air flowrate to the furnace Air flow first drum
Air flow rate second drum Air flow third drum Air flow fourth drum
Secondary air flow to furn. Air flow afterburner      CH4 flow rate afterburner
First drum speed  Second drum speed Third drum speed 
Fourth drum speed NaOH flow CH4 DeNOx flow
NH3 DeNOx flowrate

Law constraints Process constraints
% vol. min. O2 afterburner   Delta P max on every drum
T out min. afterburner T in max. and min. DeNOx reactor
HCl max to the stack % max. unburnt in ashes
SO2 max to the stack Max. and min. steam produced
NOx max to the stack % vol. max. O2 afterburner
NH3 max to the stack Delta max. combustion on the first 3 drums

T out max. and min. primary combustion chamber

Higher and lower constraints on the degrees of freedom

( )
4 4 4 3 3, ,obj rif rif vap vap CH PC CH DeNOx CH NH NHF W c W c W W c W c= + − + −

On-line optimization of continuous processes

D. Manca, M. Rovaglio, G. Pazzaglia, G. Serafini. Comp. & Chem. Eng., 22(12), 1879-1896, (1998)
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Problem solution

• We must adopt a nonlinear constrained multivariable optimization routine which 

is efficient (in terms of CPU time) and robust (able to identify the solution).

• We must implement a detailed model of the process able to simulate the 

response of the system whenever the optimization routine provides a new 

vector of degrees of freedom.

• The main task of the process optimizer is to bring the system to operate in the 

“feasible” region, where the constraints are respected. In some cases, it may 

happen that the objective function worsens compared to the initial conditions 

since the process is brought to operate within the feasibility region. Then, within 

this region, the optimizer maximizes the objective function.

• Note that the explicit computation of the objective function is almost 

instantaneous. This does not occur for the evaluation of each single term which 

composes the objective function as they come from the simulation procedure of 

the process.

On-line optimization of continuous processes

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 45



L5—

 

1

2

2.1

2.2

2.3

2.4

2.5

3.1 3.2 3.3 3.4

4

Homogeneous 
combustion section

Heterogeneous

combustion section

Process Model – Primary kiln

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 46



L5—

i,RIF

OUT

i,RIF

IN

i,RIF

i,RIF
RFF

dt

dM
−−=

Solid phase

Gaseous phase

0=−+ OUT

i,kk

rif

i,RIFOUT

i,k Wx
PM

R
W

NGiNCk ,1,1 ==

OUT

i,RIFF
IN

i,RIFF

OUT

i,kW

IN

i,kW

i-th drum

NGi ,1=

Material balances on each drum

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 47



L5—

OH
km

N
xy

NOxpSOkHClnCONClOSHC
i

iykqpmn

iO

222
22

,2 
−

+
−

++++⎯⎯ →⎯


yx i,NOi =

1

3150

25001

2

2

100
−

−


−

=

out

i,OG

%

i,NOG

i,NO

i,NO

W)T/exp(T

W





Combustion reactions in the solid phase

(Bowman, 1975)

2 2

1
CO O CO

2
+  →

2 2

1 1
N O NO

2 2
 +  →

Combustion reactions in the homogeneous phase

Chemical reactions

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 48



L5—

),,,( ,,,, iinertiirifiipisc MMdfA =









−−+= )exp(11

,


 iCG

i

N
isciisc AA ,

*

, =

rifisc

iO

iOix

iRIF PMA
xk

R 


= *

,

,

,,

,

2

2



Corrective factors:
(adaptive parameters)

),,,,( ,,,, TxWdfk ikiariaiipix =
Granular solid bed

Kinetic determining step: O2 diffusion

 ,

Primary kiln – combustion kinetics

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 49



L5—

Manca D., M. Rovaglio, Ind. Eng. Chem. Res. 2005, 44, 3159-3177

Process model – the equations

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 50



L5—

Manca D., M. Rovaglio, Ind. Eng. Chem. Res. 2005, 44, 3159-3177

Process model – the equations

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 51



L5—

Manca D., M. Rovaglio, Ind. Eng. Chem. Res. 2005, 44, 3159-3177

Process model – the equations

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 52



L5—

Manca D., M. Rovaglio, Ind. Eng. Chem. Res. 2005, 44, 3159-3177

Process model – the equations

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 53



L5—

Process model – the equations

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 54

Manca D., M. Rovaglio, Ind. Eng. Chem. Res. 2005, 44, 3159-3177



L5—

Process model – the equations

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 55

Manca D., M. Rovaglio, Ind. Eng. Chem. Res. 2005, 44, 3159-3177



L5—

Manca D., M. Rovaglio, Ind. Eng. Chem. Res. 2005, 44, 3159-3177

Process model – the equations

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 56



L5—

Manca D., M. Rovaglio, Ind. Eng. Chem. Res. 2005, 44, 3159-3177

Process model – the equations

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 57



L5—

Manca D., M. Rovaglio, Ind. Eng. Chem. Res. 2005, 44, 3159-3177

Process model – the equations

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 58



L5—

Manca D., M. Rovaglio, Ind. Eng. Chem. Res. 2005, 44, 3159-3177

Process model – the equations

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 59



L5—

<

Manca D., M. Rovaglio, Ind. Eng. Chem. Res. 2005, 44, 3159-3177

Process model – the equations

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 60



L5—

Results:

On-line optimization of continuous processes

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 61



L5—

Results:

On-line optimization of continuous processes

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 62



L5—

On-line optimization of continuous processes

Rovaglio, M., Manca, D., Rusconi, F. Waste Management 18, 525-538, (1998)

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 63



L5—

On-line optimization of continuous processes

Rovaglio, M., Manca, D., Rusconi, F. Waste Management 18, 525-538, (1998)

© Davide Manca – Process Systems Engineering A – Master Degree in ChemEng – Politecnico di Milano 64



L5—

Case-study #2

On-line optimization of
discontinuous processes
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Slop-cutP1

P2

Two-components batch distillation

1. Total reflux

2. Collection of P1 in the dedicated tank

3. Out-of-spec collection in the “slop-cut”

4. Collection of P2 in the still pot

On-line optimization of discontinuous processes
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• There are three distinct approaches to the selection of the objective function

when distillation batch processes are involved:

1. Maximize the product quantity

Converse and Gross (1963) were the first researchers to face the optimization

problem for a batch distillation column. Logsdon et al. (1990) solved the NLP.

2. Minimize the distillation time

The reflux profile is divided into a number of intervals with the target of

reducing the total distillation time (Coward, 1967). Mujtaba and Macchietto

(1988) solved the problem with an SQP algorithm.

3. Maximize the profit

The method is based on a profit function, for instance the capacity factor, that

takes into account both the quantity/quality of the product and the total

distillation time. Kerkhof and Vissers (1978), Logsdon et al. (1990), Diwekar

(1992).

Optimal trajectory
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• There are three distinct approaches to the selection of the degrees of freedom

when distillation batch processes are involved:

1. Constant reflux distillation

The degrees of freedom are: pressure, vapor flowrate inside the column,

distillate flowrate.

2. Constant composition

The degrees of freedom are: pressure, vapor flowrate, and the purity of the key

component that remains constant throughout the batch.

3. Variable reflux profile

The degrees of freedom are: pressure and reflux ratio (or equivalently the

distillate flowrate) at any time of the batch → Optimal trajectory.

Optimal trajectory
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D (mol/h) Variable reflux profile

Optimal trajectory
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The DAE system comprises

(NS+2)(NC-1)+1 ODE (mass + energy balances)

(NS+1) NC AE (thermodynamic equilibria)

(NS+2) AE (stoichiometric equations)

Optimal trajectory
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Objective function + constraints Variables

Initial values

OPTIMIZER

Optimal solution

MODEL

SQP

Simplex

Robust method searching the solution within the 
entire domain of the dof

OPTIMIZATION 
METHODS

Optimal trajectory
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Optimal trajectory
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