Process Systems Engineering A

Prof. Davide Manca Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta" Politecnico di Milano

LAB 6

Calculate the economic potential of fourth level by applying the following correlations, whereas the total cost of the column is given by the installed cost, and the fillers cost.

Pressure vessels, Columns, Reactors

See LAB 4.

Trays

Installed cost:
$$I.C._{trays} = \left(\frac{M \& S}{280}\right) 4.7 \cdot D^{1.55} \cdot H_{TOT} \cdot F_c$$
 [equipment cost + installation cost]

with D and $H_{\it TOT}$ in [ft]. $H_{\it TOT}$ is the total height of the column:

$$H_{TOT} = (N_{trays} - 1)H_{Spacing between trays} + H_{Top-Bottom}$$

with $H_{\textit{Top-Bottom}} \cong 4-5 \; \mathrm{m}$.

The factor F_c is calculated as the sum of three factors: $F_c = F_s + F_t + F_m$.

Tray spacing [in]	24	18	12
F_s	1.0	1.4	2.2

Tray type	No down-	Sieve	Valve	Bubble cap	"Koch
	comer				Kaskade"
F_{t}	0.0	0.0	0.4	1.8	3.9

Tray Material	Carbon Steel	Stainless Steel	Monel
F_m	0.0	1.7	8.9

Heat exchangers

$$\label{eq:analytical_cost} \text{Installed cost: } I.C. = \left(\frac{M \ \& \ S}{280}\right) 101.3 A^{0.65} \left(2.29 + F_c\right) \qquad \text{[equipment cost + installation cost]}$$
 with $A = \text{Area of heat transfer in [ft^2], and } F_c = \left(F_d + F_p\right) F_m$

NB: the so-called "installed cost" is the sum of the purchase cost and the installation cost.

Material Shell Tube	$\frac{CS}{CS}$	$\frac{CS}{Brass}$	$\frac{CS}{Mo}$	$\frac{CS}{SS}$	$\frac{SS}{SS}$	$\frac{CS}{Monel}$	Monel Monel	$\frac{CS}{Ti}$	$\frac{Ti}{Ti}$
F_m	1	1.3	2.15	2.81	3.75	3.1	4.25	8.95	13.05

NB: CS = Carbon Steel; SS = Stainless Steel; Mo = Molybdenum; Ti = Titanium

Pressure [psi]	≤ 150	300	400	800	1000
F_p	0	0.1	0.25	0.52	0.55

Heat exchanger	Kettle	Floating Head	U-tube	Fixed tube
type				
F_d	1.35	1.00	0.85	0.8

For the calculation of heat exchange area, the heat exchanged in the condenser is:

$$Q_c = U_c A_c \Delta T_{ml} = W_{H,O} c_{p,H,O} (T_{out} - T_{in}) = \Delta H_{ev} (T_{cond}) \overline{V}$$

where U_c is the global heat transfer coefficient, A_c is the exchange area of the condenser, ΔT_{ml} is the logarithmic mean temperature difference, W_{H_2O} is the flowrate of cooling water, T_{in} and T_{out} are the inlet and outlet temperatures to the condenser (generally, $T_{in}=30^{\circ}C$ e $T_{out}=50^{\circ}C$), \overline{V} is the condensing flowrate at the column head. In the case of stabilizer we recommend $T_{out}\cong38^{\circ}C$.

The logarithmic mean temperature difference is calculated as:

$$\Delta T_{ml} = \frac{\left(T_{cond} - T_{out}\right) - \left(T_{cond} - T_{in}\right)}{\log \frac{T_{cond} - T_{out}}{T_{cond} - T_{in}}}$$

Consider $U_c \cong 580 \; W/m^2 K$. Use condenser duty and T_{cond} from HYSYS/UniSim.

For the calculation of the heat exchange area of the reboiler, the heat exchanged in the reboiler is:

$$Q_{r} = U_{r}A_{r}\Delta T_{r} = W_{\textit{steam}}\Delta H_{\textit{ev}}^{\textit{steam}} = \Delta H_{\textit{ev}}\left(T_{\textit{reb}}\right)\overline{V}$$

in which W_{steam} is the flow rate of steam to the reboiler, \bar{V} is the evaporating flow rate in the reboiler (process side).

Consider $U_r \Delta T_r = 11250 \,\mathrm{Btu/h} \,\mathrm{ft}^2$. Use reboiler duty from HYSYS/UniSim.

The operating costs by the reboilers can be calculated considering that the cost of 30 bar steam is 1.65€/1000lb, while that of the 70 bar steam is 2.25€/1000lb. The cost of cooling water to evaluate the operating costs by the condensers is 0.06€/1000USgal.

Antoine Equation - Water coefficients

$$P_i^0(T) = \exp(C_1 + \frac{C_2}{T} + C_3 \ln(T) + C_4 T^{C_5})$$
 [Pa], [K]

C_1	C_2	C_3	C_4	C_5
73.649	-7258.2	-7.3037	4.17E-6	2