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Hierarchical approach to process optimization
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About data reconciliation...
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About data reconciliation...
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About data reconciliation...
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Introduction

 The Data Reconciliation methodology can be divided into three distinct phases

(Romagnoli e Sanchez, 2000):
— Classification of process variables and decomposition of the problem;

— Detection, identification and estimation of gross errors;

— Estimation of process variables not measured or not measurable.
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Measurement classification

* Because of costs, convenience, and technical reasons, not all the process

variables are measured.

* By assuming that the process is working in steady-state conditions, some
unmeasured variables can be estimated using other measured variables and
calculations based on mass and energy balances.

* The estimation of not measured variables depends on the process layout and
on the in-the-field instrumentation.

* In general, the process instrumentation is incomplete (it does not measure all

the process variables).
The unmeasured variables can be divided into:

— Predictable variables (determinable)

— Unpredictable variables (undeterminable)
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Measurement classification

Furthermore, measures can be classified into:
— redundant

— nonredundant

* A measure is redundant if it remains determinable when the observation is
removed.

* The classification of the variables is an essential tool to design and revamp
monitoring systems.

* Arobust classification of variables leads to significant savings linked to the
selection of instrumentation for field installation.

* Anincorrect classification of variables leads to the introduction of unnecessary
instrumentation involving higher investment costs.
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Measurement classification

* Once the variables are classified, we have a significant amount of information

concerning the process topology.
* |tis now possible to solve the following problems:

— Select the set of measured variables which must be corrected (reconciled)
in order to increase the accuracy of the measured and unmeasured

process variables.

Problem Solying

— Select the minimum number of measures so that Tools and Teehnigues

all the unmeasured variables can be determined.
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Process model

- The process model is a mathematical formulation that describes its behaviour
under either STEADY STATE or DYNAMIC conditions.

- The process model is used at several levels:
- To infer unmeasurable parameters
- To reconcile measures
- To identify measures affected by gross errors
- To determine the optimal control action
- Model based control (for example: Model Predictive control)

« Feedforward control

For process optimization
- For process supervision

- The process can be described by either linear or nonlinear models: ARX, NARX,
ARMAX, NARMAX, Laplace transforms, Regressions, Artificial neural networks
(ANN), deterministic and phenomenological models (First Principles), ...
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Redundancy

- Romagnoli and Sanchez (2000) define a system as being redundant when the
whole collection of data/information available exceeds the minimum required
amount for a univocal determination of the independent variables that describe

the selected model.

- Since the data are obtained from process measurements affected by probabilistic
fluctuations, redundant data are generally inconsistent thus every data subset

provides different results from other subsets.

- In order to obtain a consistent solution to the problem of determining the

measures, it is therefore necessary to introduce an additional criterion.
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Redundancy

Q Redundancy of the system

In case of Black Box approach we define the redundancy as the difference
between the number of measured variables and the number of degrees of
freedom:

Redundancy = # measured variables — # dof = NY — NPAR

The system describing numerically the reconciliation problem is
OVERDETERMINED. There are more equations than unknowns.

ryexper (1) _ yg;-alc (X]_l X2""’XNPAR) — O
) yexper (2) - yfalc (Xll Xz;- .« oy XNPAR) = O

\yexper(NY)_ ych (Xl’XZ"”’ XNPAR) =0

The overdetermination of the system leads to the impossibility of completely
satisfying it. Conversely, it is possible to minimize the sum of squares of the
equations by solving a minimization problem with a non-linear regression in
the parameters, X.
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Object function

A The reconciliation procedure has to minimize the following objective function:

0 [ Yo ()~ Y ()]

Min f =>

X i=1

By introducing the incidence matrix M|,

it is possible to check if a dof does

NOT affect any measure (column-wise)

or if a measure is NOT affected by any

dof (row-wise).

If two columns are linearly dependent
then there is a high functional dependency

between those degrees of freedom.

s (i)

1
i ‘ay‘(;'eﬂ‘c‘ o
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Solution of the reconciliation problem

- The Reconciliation problem can be solved if we have:
- Positive redundancy
- Independent degrees of freedom

- A robust numerical algorithm especially if we work online
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Solution of the reconciliation problem

« The basic assumptions are as follows:

1. The process model is able to properly represent the system under
consideration (model validation);

2. The measures are subject to an gerror that is normally distributed with
average equal to zero and variance o known (or that can be computed);

3. The measures come from a stationary process.

- The failure of Reconciliation (once hypothesis 1 is verified) is due to points 2 and 3.
There may be measures affected by gross error that have a non-zero averaged

error ¢&.
2
\/iexp( jdg;to

- Possible causes of gross errors are: unreliable instruments, non-homogeneous

E(e) = Ij:g p(e)de= _roo

conditions around the instrument, process instability, accidents, transcription
errors, communication failures, non-stationary conditions.
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Statistical analysis

To perform the Data Reconciliation procedure we must start from the averaged
measured values (measured in the field at a given time when the process is mildly
stationary).

At this regard, we have the expected value w(i) and variance ofi) of the measure.
It is possible to distinguish between efficient and robust estimators:
-  ROBUST estimators

« For (i) we use the Median: it is the central value of the population in
ascending order. In the case of an even number of terms we do the
arithmetic mean of the two central values.

- For o(i) we use the MAD (Median Absolute Deviation)
MAD(i) = 1.4826 * Median(|ye,pe,(i,k)—Median(y,,(i,k) [)

EFFICIENT estimators
Arithmetic mean: y,(i)= Zyexper(l k) /NS \/

15 [ Vo (1K) =y, () |
Z NS -1

k=1

Standard deviation or mean square deviation: o(i) =
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Model identification

Q@ Once we have defined NY = number of measures and NPAR = number of
degrees of freedom (parameters) it is possible to distinguish the following cases:

O NPAR > NY (NEGATIVE redundancy)

v

For instance: the proposed model y = ax? + bx + ¢ comprises three parameters
(NPAR = 3) whilst the experimental points are just two. There is an infinite
number of parabolas that match exactly the experimental data. It is not possible

to identify any Gross Errors.

L6—19
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Model identification

O NPAR = NY (NO redundancy)

A

v

In this case, there is only one curve passing through the NY points. It is worth
observing that, in this case, the model is a straight line (y = ax + b ) depending

on two parameters.
We have: NPAR =2 and NY = 2. The redundancy is zero and it is NOT possible to

detect any Gross Errors.
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Model identification
QO NPAR < NY (POSITIVE redundancy)

A o

T Gross error (outlier)

v

In this case, the proposed model is still a straight line (NPAR = 2) while the number
of experimental points is seven: NY = 7. There is NOT a model that simultaneously
satisfies all the experimental data. It is then necessary/advisable to minimize the
error by minimizing the distance between the model and the measured data.

We can also detect NGE potential gross errors: NGE = NY — NPAR = R = Redundancy

N.B.: if we identify a gross error it is possible to eliminate it or compensate it with
the value that has been just reconciled. In this case we do not decrease the
redundancy.
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Case-study

On-line data reconciliation
of an incineration plant
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Case study: incineration plant

Waste to energy plant with DeNOx catalytic section
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Case study: incineration plant

<
!

Specifications required

Evaluate the consistent value of the measurements from the field
Identify measurements affected by gross error

Real-time knowledge of the characteristics of the incoming waste in terms of

elemental composition and heat of combustion
Estimation of the inlet streams unmeasurable or not available:
« Air leakages
« Methane flowrate in the postcombustion chamber
Evaluation of the operating parameters:
- Bag filter efficiency
- Catalyst efficiency

- Heat exchangers fouling factor
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Case study: incineration plant

O Problem definition

0 [y ()~ Y700 |

Objective function: Mxin f= Z 0)

Measures to be reconciled: 24 -

T gas postcomb. CO out postcomb. 02 out postcomb.

T out gas radiative zone T out gas superheater T out gas economizer

T out gas preheater T air combustion Gas entering washing column
Gas out washing column T out gas heater Tout gas heat exchanger gas-gas
T gas stack T in gas DeNOx T out gas DeNOx

NOx entering DeNOXx NOx exiting DeNOXx Ammonia flow rate

HCI to the stack SO2 to the stack CO to the stack

Soot to the stack 02 to the stack Steam flowrate

Degrees of freedom (parameters of reconciliation): 23

Waste flow rate Ash fraction in the waste Cl fraction in the waste

S fraction in the waste N fraction in the waste C fraction in the waste

Kiln air leakage Bypass gas fraction in the furnace Methane flow rate afterburner
Losses in the boiler Corr. heat exch. coeff. rad. zone Corr. heat exch. coeff. superheater
Corr. fact. economiz. Corr. fact. Preheater Bag filter efficiency

Acid wash efficiency Basic wash efficiency Corr. fact. Steam heater

Corr. fact. exch. gas-gas Preheater air flow rate Methane flow rate burner DeNOx
Catalyst efficiency DeNOx Air leakages after postcombust.
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Case study: incineration plant

« Problem solution
- We need a nonlinear regression routine to minimize the objective function.

- We must have a detailed model of the process that simulates the measurements
(i.e. calculates the reconciled values of the acquired measurements) whenever the
regression routine suggests a new vector of degrees of freedom.

- If the reconciliation procedure is NOT able to minimize the objective function to
the required precision it means that the material, energy, and momentum
balances describing the process “do not close”. In this case we can assume the
presence of a gross error and remove the measure respect to which there is the
larger deviation (or better replace the measured value with the estimated one).
The procedure continues until we reach the required accuracy. If the assumed
replaced measurement affected by gross error does NOT make the procedure
successful, we reintroduce the original removed measure and eliminate the next
one featuring the greatest deviation. In this case study the redundancy is equal to
one, consequently it is possible to identify just one gross error.

© Davide Manca — Process Systems Engineering A — Master Degree in ChemEng — Politecnico di Milano L6—26




a

Case study: incineration plant

The results...

FPortata rifiuto 25/11/9815.17.6558 597344 kaoth

GOO0.50

Carico termico 25/11/92 151514 19.05 mw

Potere calorifico  25/11/98 151514 271204 kcalfkg

Rendimento termico  25/11/9216.07.33 0.60

Fortata vapore 25/11/3816.07.38 13.51 t/h
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Case study: incineration plant

O The results...

File Modifica Ceca 2

DEMO CYCOM Plus : PROCEDURA DI RICONCILIAZIONE - RIEPILOGO

Funzione obiettivo. .. ..o iiiiicieeeeens 1298 .2640088
12T =T o 1 ] o = OSSO 4 _989820E-82

Valori finali dei gradi di liberta® attivati

Portata di rifiuto [kg/h]leeeeeeicmnannaans : 387 .5240008
Fraz.massiva H?0 nella corrente entrante...: 1.338146E-81
Fraz.massiva C1 nella corrente entrante....: 4 _B89461SE-84 —
Fraz.massiva 5 nella corrente entrante....: 1.582423E-84
Fraz.massiva H nella corrente entrante....: f.BOAF72E-A4
Portata aria tenute forno [kg/h].-..._..._..: 17069 880000
Frazione di by-pass fumi forno..._..._..._..: 4L_3082227E-02
Dispersioni termiche caldaia [% duty]...... : 2.801692E-01
Fat. correttivo emissiv. gas zona radiante 1.34945,
Fat. correttivo scambio termico surriscal. 1.866711

C.813368E-M1
L_862194E-01
L .08000808E-M1
J.835258E-M1
7.4800829E-M1

Fat. correttivo scambio termico economiz.

Fat. correttivo scambio termico preriscal.

Efficienza termica colonna di lavag.basico
Fat. corret. scambio termico risc. a vapore
Fat. corret. scambio termico scam. gas—gas
portata aria preriscaldatore 15341.8300008
portata CH4 bruciatore di supporto DEMODX... 164789700
Efficienza catalizzatore DEHOR..._..._..._..: 1.6851941

1| | H
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Case study: incineration plant

O The results...

File Modfica Cerca ?

COWMPOSIZIONE DELLA STREAM RICOMCILIATA: r
percentuale di C.... .. ... o o ioaoaaaaaat 3.431565E-M
percentuale di H.. ... ... ... . oo cacaaaanaat 3.094497E-82
percentuale di O.... ... ... . o coeoaaaat 1.485572E-M
percentuale di M. ... .. ... ... ...t 7.B6B772E-04
percentuale di S......iioiiiiaiiiaaiaaaaaaat 1.582423E-84
percentuale di Cl... ... ... ..o .coeoooamaaaasat 4 BOLG1SE-B4
percentuale di H20. ... ... ... ... ...t 1.338146E-M
percentuale di iperti... ... ... .ol 3.500929E-m1
potere calorifico [kcalfkg]l---ccoooooooot 3168.306080

RIEPILOGO MISURE RICOMCILIATESDATI DI IHPUT:

misura val. sperim. val. calcol. errore % (1-188)
TIC1-1A 1837 .725808 18168.580008 2.60

AI1-2 3.16731 3.04548 3.92

AIC1-1 10.56437 1828697 2.66

TI1-2 489 27864 489 _ 31068 .,

TI1-3 315 .9750808 31626158 - a9

TI1-4 24867998 244 _81758 1.78

TIC1-7 213 .676808 214 _63938 45

TI1-6 1853770808 188._22988 2.82

FI1-14 47122 660048 47149 640008 - 8o

TI1-9 64 29519 62.79272 2.36

TIZ2-M 115 . 75748 115 68448 .13

TI2-83 260.800048 250.48338 L. a7

TIZ2-88 293 .808380 381.23778 2.58

AIZ-M 202 84270 192 96918 499

AlZ2-a82 18.83679 1885212 . a8

AI1-4 1.0080888 -99891 -11

AI1-% L.83523 L.M237 b

FIC1-11 18 .58559 18 49897 -8y —

N el
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From data reconciliation to on-line optimization

Optimization

P
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