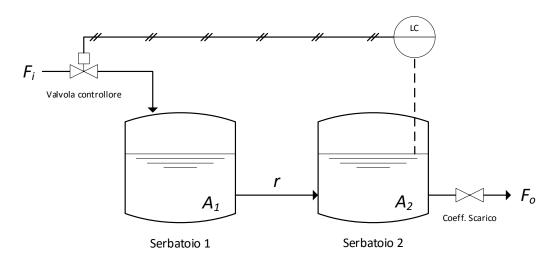
Strumentazione e Controllo di Impianti Chimici

Prof. Davide Manca
Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta"
Politecnico di Milano

Esercitazione #12

Dimensionamento controllore P e PI con Cohen-Coon

1. Stima dei parametri del controllore con il metodo di Cohen-Coon


Si hanno due serbatoi interagenti, con le seguenti caratteristiche:

- Serbatoio 1:
 - o $A_1 = 30 \text{ m}^2$
 - o $r = 1.2 \text{ s/m}^2$
- Serbatoio 2:
 - o $A_2 = 50 \text{ m}^2$

La portata in ingresso è F_i = 9.4 m³/s ed il sistema si trova in condizioni stazionarie, mentre la portata in uscita F_o varia linearmente con l'altezza di liquido nel secondo serbatoio, secondo una legge tipo F_o = 1.43 h_2 .

Un controllore di livello monitora il secondo serbatoio, il cui set point è fissato pari a 6.6 m.

Applicare il metodo di Cohen-Coon allo scopo di determinare i parametri K_c e τ_l del controllore. Allo scopo di studiare la *Process Reaction Curve*, si supponga di fornire un disturbo a gradino sulla portata in ingresso al primo serbatoio tale che essa raddoppi, con sistema in *Open Loop*.

2. Controllore P con Cohen-Coon

noto il parametro K_c , si modelli la dinamica dei due serbatoi considerando che il controllore sia di tipo proporzionale. (Disturbo al sistema: $F_o = 1.9 h_2$.)

3. Controllore PI con Cohen-Coon

noti i parametri K_c e τ_l , si modelli la dinamica dei due serbatoi considerando che il controllore sia di tipo proporzionale-integrale. (Disturbo al sistema: $F_o = 1.9 h_2$.)