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Economic potential of level 4

The economic potential of the fourth level is defined as:
EP, = EP, - €

with EP, in [M€/y].

separation section

If the potential of the fourth level is greater than zero, the process may
be economically attractive; vice versa, the process is definitely not
economically interesting.

Andrea Isella — Process Systems Engineering — PSE-Lab POLITECNICO MILANO 1863




Cost of the separation section

Equipment costs are the sum of two contributions:
e the fixed costs of investment;
* operating costs.

In the calculation of EP,, the cost of columns and heat exchangers
(i.e., reboilers and condensers) is taken into account.

The cost of the flash is considered to be negligible, because it is much
lower than that of a distillation column. Thus, it is not to be considered
within the costs of the separation section.

The cost of the furnace and other important process-to-process heat
exchanges is taken into account at the EP. level.
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Why the process simulator?

e To calculate investment and operating costs of a column it is
necessary to know the diameter and the number of trays required
for the separation.

* Inthis phase, the hypothesis of ideal separation of the components
is removed (as it was introduced in the calculation of the EP,). It is
therefore necessary to introduce the tray efficiencies in the
separator section.

To simplify this complex operation, we can simulate the system by
means of a process simulator (HYSYS or UniSim).
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Flowsheet of the HDA plant
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Simulation environment

To set up a simulation with HYSYS, we must proceed according to the
following steps:

e Select all the components involved in the simulation;
* Select the most appropriate Equation of State (EoS);

* Provide information on the chemical reactions involved in the
simulation.
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Selection of Components and of the Equation of State

In the window "Simulation Basis Manager", the list of
components can be entered by selecting the tab "Components".
Add new components to the simulation by pressing "View...".

The components can be searched within the HYSYS database by
entering the name or the chemical formula, and are added with
the button " €< Add Pure ".

In the tab "Fluid Pkgs", it is possible to select the most
appropriate Equation of State (EoS).

For the simulation of the HDA plant, we use the "SRK" EoS.
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Kinetic scheme (1/2)

Sets of chemical reactions can be added in the tab "Reactions".

Using the button "Add Rxn...", we can enter a single reaction in the
kinetic scheme: at this point you need to select the type of information
to be provided (Conversion, Equilibrium, Kinetic, ...).

Accordingly, it is possible to describe the reactor in different ways:

* "Conversion": providing the conversion (as a percentage) of the
reactions with respect to the main reactant, using a conversion
reactor;

* "Equilibrium": providing information about the reaction
equilibrium, using an equilibrium reactor;

» "Kinetic": providing the kinetic parameters of the reactions (pre-
exponential term and activation energy) in the tab "Parameters".
Within the simulation environment, using a CSTR or a PFR.
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Kinetic scheme (2/2) and Simulation environment

Once we open the new window, in the menu "stoichiometry", insert
chemical species taking part in the reaction, accompanied by their
stoichiometric coefficients (note that those of the reactants are
negative!). Then make sure that the mass balance is satisfied.

Within the tab "Basis" select the main component and the phase in
which the reaction takes place.

Once we've entered all the reactions, add the thermodynamic package
by selecting the "Add to FP".

After completing all the above steps, we can enter the simulation by
pressing "Enter Simulation Environment".
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Inlet streams

Define the streams according
to MATLAB results
(entering at 25°C, 34 bar)
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Mixing section
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Towards the reactor
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Reaction section
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Describe the PFR according to
MATLAB results and the
kinetic scheme

Andrea Isella — Process Systems Engineering — PSE-Lab 18 POLITECNICO MILANO 1863



Effluent cooling

Recycle
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MIX-102 Heater1 heated VLV-100 jaminated (Cooler1 Cooled
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Laminate the outlet stream to
31 bar and cool it down to
35°C
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Flash
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h =
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Separate the vapour and the
liquid fraction with an
adiabatic flash
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Splitter
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Split the vapour stream
according to the Split Factor
from MATLAB
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Spreadsheets
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the computation of HTR and
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Andrea Isella — Process Systems Engineering — PSE-Lab 24 POLITECNICO MILANO 1863



Adjusts
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Towards the separation section
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Design of the separation section (1/3)

Downstream of the flash, the liquid phase is sent to reach the
specification on the purity of benzene (99.97% molar).

We have to design the separation section in order to separate the
following streams:

Benzene (main product)

Light products (methane and hydrogen, to be burnt)

Toluene (to be recycled to the reactor)

Biphenyl (to be sold/burnt according to our decision made at level 2)
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Design of the separation section (2/3)

The desired separation can be performed with multiple sequences.

However, there are guidelines to help you select the most appropriate
one:

1. Remove the corrosive components first (in order to select cheaper
material);

2. Remove monomers and reactive components (in order to avoid
undesired reactions and fouling);

3. Remove components with higher flow rates (in order to use
smaller equipment);

4. Remove product and recycle streams as distillate (in order to avoid
thermal degradation of the product and to improve control of the
purity specifications);

5. If products and recycles are obtained at the bottom of the column,

it is better to collect them as vapour and then to condense them (in
order to improve their purity specifications).
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Design of the separation section (3/3)

Following the guidelines, we can draw the following conclusions:

 Remove light-ends first, by using a column (Stabilizer), to avoid
corrosion by hydrogen.

 To separate benzene, toluene and biphenyl, two different ways are
possible:

1. Separate first Benzene from Toluene+Biphenyl and then
Biphenyl from Toluene;

2. First separate Benzene+Toluene from Biphenyl and then
Benzene from Toluene.

The first option is more convenient, since benzene is the most
abundant compound.

Furthermore, using the first solution, the main product (benzene) and
the recycle stream to the reactor (toluene) will be separated as
distillates of the columns, facilitating their purity control.
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Stabilizer

The Stabilizer (full reflux) is made up of five real stages (3 trays): the feed tray
is the 2"d one. Both the top and bottom pressures are 3.573 bar.

The refrigerant to be used is water: its inlet temperature is 30°C, whereas the
maximum recommended outlet temperature is 38°C.

Input data:
* Reflux Ratio=R/D =0.619;

 Temperature of the light-ends (to be calculated basing on a minimum
required AT_. = 10°C, with respect to the inlet water temperature).

Additional data: (at T = 600°C, just to check the results)
* Reboiler duty =2+3 - 10°klJ/h;

Ty orom €Stimated as 130+135°C;
* Light ends flowrate = 15+25 kmol/h.

Trays are assumed to operate at 100% efficiency.
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Towards the Product column
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Product column
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Product column

For the design of the second column the specifications assigned are:
e purity of the recovered benzene of 99.97% molar;

e recovery of 99.5% with respect to benzene fed.

The column operates at P = 1 bar and with a total condenser.

Since the column involves a multi-component distillation, it cannot be
sized by the McCabe-Thiele method.
We can design it by the Fenske-Underwood-Gilliland method.

It is possible to assume a reflux ratio 1.3 times the minimum ratio.
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Fenske-Underwood-Gilliland method (1/4)

1) Selection of light-key component and heavy-key component

light-key (lk): benzene heavy-key (hk): toluene

aBenzene > aTquene > aBiphenyI
(No distributed components between Ik and hk components)

2) Fand z; come from HYSYS results. Methane traces (whose molar
fraction is in the order of 10-) can be neglected.

3) From the specifications and the

following material balances we Fz; = DXi,D I <lk
calculate the compositionand ~ {Fz; = DX, +Bx,; 1=1k,hk
flowrates at the top and the Fz, = Bx , i > hk
bottom of the column: - !
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Fenske-Underwood-Gilliland method (2/4)

4) Calculation of relative volatilities at the top and the bottom of the
column

. _ RO,
) I:)O(T)hk

relative volatility of component i respect to hk

Coefficient for calculation of volatility:

I[P, (T)] = Cl+2+c3 IN(T)+C4-T% T [K], P [Pa]

83.918 6517.7  -9.3453  7.12E-06
80.877 6902.4  -8.7761  5.80E-06 2
SN 76.811 9878.5  -7.4384  2.04E-18 6
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Fenske-Underwood-Gilliland method (3/4)

5) N, calculation by the Fenske correlation:

In DX . BX, g
Dx. Dx — N, BX s DX,p
iD D | _ i<k N = B ,
BXi’B Bth,B In(aik)

6) R, calculation by the Underwood equations:

(|)Z =1-q (||)Z_ 'D—R +1

i—1 0!|— i=1 0[|—6

PLEASE NOTE:

a = \/ atop ) abottom
h' —h"
T —nt

(hY/'/F from HYSYS)

7) R calculation by the heuristic rule: Ropt = 1.3 Rpin
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Fenske-Underwood-Gilliland method (4/4)

8) N calculation by Gilliland diagrams or by the following equations:

0= T T TTTTTI T TTTTO
: f BN = o
i N +1
o E;‘o:z : ] R _ R -
:l:.‘. | F (R) — min
\, R+1
S5 441
P = o Van Winkle and Todd [16]
= — o Gilliland data points [13, 14]
B A Brown-Martin data [15]
| == Molokanov Eq. for line [17] | 0.5668 -
| ¢=0.75-0.75F Eduljee
— '.I ( 1+54.4F .F—lj
11+117.2F JF
0.01 | 1111l RN ¢:1_e vF Molokanov
0.01 0.1 1.0
R_Rmin
R+1
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Optimal feed tray

The FUG method is not able to provide us any information about the
optimal feed tray: short-cut correlations can be used for this purpose.

Fenske correlation: Yopowr
Condenser
'SR Refl
Z th B --------- < - > Distillate Product
In| = .- X2 L
N _ Uk Kws -
min,INF e .
In(cxic,ine ) -
N INF — N e;\r ---------- Reboiler
I\Imin,INF |\Imin ‘ (l
el Bottom Product
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Column efficiency

The efficiency is related to the mass transfer, which depends on the geometry and
the design of the trays, on the flow rates, on the paths followed by the streams and
on the compositions.

Different types of efficiencies can be defined:

* Overall column efficiency: a single value of efficiency to the entire column;
* Tray (or Murphree) efficiency: an efficiency defined differently for each tray;
* Local efficiency: an efficiency for each specific geometrical point of a tray.

N

For the preliminary design of a column, we can use the overall efficiency: 77 = —92.
I\lreal
For the calculation of the column efficiency, we use the O'Connell correlation:
0.5
= 0.25
(/UF ’0‘)

Where . is the viscosity of liquid feed at bubble point (measured in centipoise, cP)
and a is the relative volatility of the two species to be separated.
The viscosity of the inlet stream is 0.3 cP.
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Recycle column
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Recycle column

For the design of the third column the specifications assigned are:
* Recovery of 99.5% with respect to toluene fed;

* Recovery of 99.5% with respect to biphenyl fed.

The column operates at P = 1 bar and with a total condenser.

Preliminarly, use a short-cut distillation column in the process
simulator to estimate the number of ideal trays and the optimal feed
tray, assuming R4=1.3 R;...

Then, using the results of the short-cut design tool, simulate the
distillation by means of a standard distillation column, using the
"Modified HYSIM Inside-Out" solver.

Assume an overall O'Connell efficiency equal to 0.24.
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Toluene recycle + Adjust
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Close the toluene recycle loop

and use an Adjust to obtain: v oz ot
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ADJ-3: Target Benzene productivity

Adjusted F2 flow rate
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Tray sizing

In order to determine the size of the trays of each column, use the
"Tray Sizing" utility of the process simulator.

Define a tray section which covers the entire column and perform the
tray sizing evaluation:

* Three different tray spacings (12", 18" and 24") must be evaluated.
LABG6: we will select the one which leads to the smallest column CAPEX.

* If the diameter obtained is smaller than 2 ft, the column should be
packed.

LABG6: we will estimate its cost considering an equivalent tray column,
whose tray spacing (12", 18" or 24") is the closest to the HETP (Height
Equivalent of a Theoretical Plate).
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