Process Systems Engineering
Prof. Davide Manca — Politecnico di Milano

Exercise 5

Simulation of HDA plant in
UniSim®

Lab assistant; Adriana Savoca
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Defining EP4

The economic potential of the fourth level is defined as:

[ EP4 = EP3 — €separation section }

with EP, in [M€/y].

« If the potential of the fourth level is greater than zero, the process may
be economically attractive; vice versa, the process is definitely not
economically interesting.

 Remarks: The cost of the flash is considered to be negligible, because it
IS much lower than that of a distillation column. Thus, it is not to be
considered within the costs of the separation section.
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Cost

Equipment costs are the sum of two contributions:
* the fixed costs of investment;
 operating costs.

In the calculation of EP4, the cost of columns and heat exchangers (i.e. reboilers
and condensers, but also the furnace and other important process to process heat
exchangers) is taken into account.

For the sake of simplicity, we will assume the same depreciation period for all the
process units which is the one assumed for the EP3 assessment that it is 5

years.

The investment costs are the sum of the physical costs of the material used for the
construction of the equipment and processing costs (i.e. welds, ...).

The operating costs are dependent on the operating conditions, by the
consumption of electrical energy and utilities (i.e. compressed air, oil, ...).
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Problem!
a N

 To calculate investment and operating costs of a column it is necessary
to know the diameter and the number of trays required for the separation.

* In this phase, the hypothesis of ideal separation of the components is
removed (as was introduced in the calculation of EP2). It is therefore
necessary to introduce the tray efficiencies in the separator section.

. J

To simplify this complex operation you can simulate the system
via a process simulator (UniSim®)!
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Data recap

Initial values of the material flows F1 and F2:
 From Matlab results corresponding to the optimal value of xv:

Heat exchanger:
 Tout = 600-750°C;

PFR:
 Values of H, D [m] from Matlab results corresponding to the optimal value of xv;

Valve:
e Pout = 31 bar:

Heat exchanger:
e Tout = 35 °C;

Adiabatic flash:

* The operative conditions are set by the valve and the heat exchanger; no other
input is needed
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Data recap

Splitter:
 Splitting ratio SR corresponding to the optimal value of xv;

Compressor:
e Pout = 37 bar;

Mixer:
» Set outlet to the lowest inlet;

Adjust 1:
» Target variable: Inlet ratio to the reactor
» Adjustable variable : F1 flow-rate

Adjust 2:
» Target variable: Selectivity
» Adjustable variable: Tube length
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Some tips

It would be better to use as first attempt the values of the process streams
identified in the calculation of EP2. Thus simulating the first mixer accounting
only for the fresh streams (F1 and F2), it is better accounting also for the
recycling stream in the gaseous phase (R) and the recycling stream of toluene in
the liquid phase (T).

The feed ratio of 5:1 can be controlled by means of two operations: the
"Spreadsheet", i.e. a spreadsheet where you can import the compositions of the
two main components in the stream exiting the first mixer and then calculate the
ratio, and the operator "Adjust ", capable of acting on a dependent variable (the
hydrogen feed F1), in order to reach the specified value of the target variable
(the cell of the Spreadsheet where it is calculated the ratio between hydrogen

and toluene).
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UniSim - Setting up the simulation

To set up a simulation with UniSim® you must proceed according to the
following steps:

o Select all the components involved in the simulation.

« Select the most appropriate equation of state (EoS).

e Provide information on the chemical reactions involved in the simulation.

B
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UniSim - Chemical composition

* Inthe window "Simulation Basis Manager", the list of components can be
entered by selecting the tab "Components". Add new components to the
simulation by pressing the "View ...".

* You can search for a single component within the UniSim database in three
ways:

o0 Viathe name in the database.

o0 Via the real name of the chemical species.
o Viathe chemical formula

e Once you have selected the component of interest, press the button “ <Add
Pure”.

 Once you have entered all the chemical species of interest, close the window.
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UniSim - Equation of state

* Inthe window "Simulation Basis Manager", it is possible to select the most
appropriate equation of state (EoS) by selecting the tab "Fluid Pkgs". Issues to

be considered in the choice are the nature of mixture, the operating conditions,

and the presence of phases splitting.

* For the simulation of the HDA plant, we recommend using the equation of

state for vapor-liquid equilibrium called “RKS”.

LAB5-28
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UniSim - Kinetic Scheme

* Inthe window "Simulation Basis Manager", by selecting the tab "Reactions", it
IS possible to add a set of chemical reactions.

* Using the button "Add Rxn ..." you can enter a single reaction in the kinetic
scheme: at this point you need to select the typology of information to be
provided (kinetics, equilibrium, conversion ...).

* Once you open the new window, in the menu "stoichiometry" insert chemical
species taking part in the reaction, accompanied by their stoichiometric
coefficients (note that those of the reactants are negative). Then make sure that
the mass balance is satisfied.

* Within the tab "Basis" select the main component and the phase in which
the reaction takes place.

« If the selection is conversion, the expression of the conversion is to be
entered (note that it is in %).

« If the selection is kinetics, enter the pre-exponential term and the activation
energy in the tab "Parameters".

 Once you've entered all the reactions, add the package thermodynamic by
selecting the "Add to FP".
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UniSim - Kinetic Scheme

It is possible to fit the kinetic scheme in different ways. For instance:
 Reactions to conversion: it is necessary to provide conversion of the reactions
with respect to the main reactant (in case of the HDA, toluene and benzene
respectively for the first and the second reaction) calculated by Matlab™ at 4
different temperatures. Within the simulation environment, it will be necessary to

use a conversion reactor.

* Reaction kinetics: You must provide the kinetic parameters of the reactions.
Once we are inside the simulation environment, it will be necessary to use a PFR
reactor . Because of non-ideality of the reaction mixture, the conversion will be
lower than that calculated by Matlab ™; it will be therefore appropriate to resize

the reactor to meet the specifications.
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UniSim - Simulation environment

After completing all the above steps, you can enter in the simulation by pressing the

"Enter Simulation Environment".

At this point it is possible to build the plant.
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Downstream of the Flash - Data

« Downstream of the flash, the vapor phase is re-circulated to the reactor after

purging.

* The composition of the liquid flow coming out of the flash depends ONLY

on the temperature and the molar fraction of hydrogen in the vent. This
stream is heated to T = 93.35 °C and laminated to 3.6 bar to be sent to

the separation section.
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Design of the separation section

Downstream of the flash, the liquid phase is sent to reach the specification on
the purity of benzene (99.97% molar).

We have to design some columns to operate the separation between four different

phases:

e Benzene (main product)

e light products (i.e. methane and hydrogen, burnt to produce energy within the
plant, according to decision at level 2)

e Toluene (to be recycled to the reactor)

e Biphenyl (to be burnt to produce energy within the plant, according to decision
at level 2))

You need to design a section separation, while working to minimize costs.
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Design of the separation section

You need to separate four components: there are different options!
However, there are guidelines to help you select the most appropriate sequence:

1. Remove the CORROSIVE components first (this affects the selection of the
material).

2. Remove components and REACTIVE MONOMERS.

3. Remove PRODUCTS streams and recycling as DISTILLATES in order to have
purified streams that do not degrade the quality of the product and reactants.

4. In the case in which PRODUCTS and recycles are located at bottom of the
column, it is better to vaporize them in the vapor phase and then condense
them for the same reason as point 3.
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Design of the separation section

Following the guidelines, we can draw the following conclusions:

 Remove light ends first, by using a column (Stabilizer), also to avoid corrosion by
hydrogen.

» To separate benzene, toluene, and biphenyl you can proceed in two different ways:
1. Separate first Benzene from Toluene + Biphenyl and then from Toluene;

2. First separate Benzene + Toluene from Biphenyl and then the Benzene from
Toluene.
First option is more convenient, because Benzene is the most abundant compound.
Furthermore, using the first solution, the main product (benzene) and the recycled
stream to the reactor (toluene) will be separated as distillates of the columns, thus
resulting streams are more likely to be purified.
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Next steps: separation section
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Column stabilizer

The stabilizer (full reflux) is made up of five real stages (3 trays) and its “feed stage” is
2nd, The top pressure is 3.573 bar.

The refrigerant to be used is water, as it is an economical fluid that does not create
safety problems or corrosion. The inlet water temperature is 30 °C, whereas the
maximum recommended output temperature is 38 °C.

Input data:
» Reflux ratio g = 0.619;

» Temperature of the light ends (to be calculated basing on the minimum required
difference of temperature AT,,,, considering the maximum outlet water temperature);

Additional data (at T = 600 °C) (indicative, to check results):
o kettle reboiler duty = 2 - 106 kJ/h

* T oom €Stimated as 132 °C

e Light ends flowrate = 14 kmol/h

The liquid stream exiting the stabilizer is cooled to T = 87.08°C and laminated to 1 bar.
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Product column

For the design of the second column the specifications assigned at the top are:

e purity of the recovered benzene 99.97% molar;
* recovery of 99.5% with respect to benzene fed.

The column operates at atmospheric pressure (P = 1 atm) and with a total
condenser. For the calculation of the efficiency of the column, we use the

formula:

0.5
E, = 0.25

()

where u: is the viscosity of liquid feed to the bubble point measured in cP
(centipoise - we recommend a value of 0.3 cP) and X is relative volatility of the
two species to be separated.
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Efficiency concept

The efficiency is related to the mass transfer, which depends on the geometry and
the design of the trays by the flow rate, from the paths followed by the currents,
from the composition.

You can define:
The efficiency of the column:

|\Iid
77 B I\Ireal

Basically you assign a unique value of efficiency to the entire column. Is it okay for
a preliminary design? In fact the concept of efficiency is too articulated in order to
be confined to a single parameter for the whole column.
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Concept of efficiency

 The “local efficiency”: identifies the efficiency of a point on the plate, good for

large diameter columns.

« The “tray efficiency” : also known as the Murphree efficiency. The calculation
assumes a perfect mixing on the plate. For multi-component mixtures must be

assigned an efficiency of tray for each of the components themselves.
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Product column

The design of the product column should be entirely done by the student.

The column should be sized by methods other than McCabe and Thiele because

it is not ideal (e.g. Fenske). It is possible to assume a reflux ratio 1.3 times the
minimum ratio.

The choice will have to take into account that the lowering of number of trays

involves an increase in the duties. Also remember to determine the optimal
feed point.
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Fenske-Underwood-Gilliland method

1) Selection of light-key component and heavy-key component

light-key: benzene heavy-key: toluene
ap > ar > ap

NB. No distributed components between light-key and heavy-key components.

2) From the specifications and the following material balances we calculate
the composition and flowrates at the top and the bottom of the column:

.
Iz, = Dx, i <lk
‘ NB. F and z,come from Unisim results,

Fz =Dy .+ By j = Mf hjr butwith the assumptlon that methane
’ D iB (whose fraction is in the order of 10"-5)

IS absent.

s

Fz, = Bx, 4 i > hk

)
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Fenske-Underwood-Gilliland method

3) Calculation of relative volatilites at the top and the bottom of the column

Po(T);

Qi hie = relative volatility of component i respect to hk
' Po(T) i

4) N,,i,, calculation: Fenske correlation

Dx Bx

ln lk.D . hic B
Dx, Dx,, p —Npin ik Bx; 5 Dxy p
— ar’ ? Nmin — -
Bx. Bx Ina
i.B hic.B Ik

3
aaverage — \/atopabottomafeed
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Fenske-Underwood-Gilliland method

5) R,,,;n calculation: Underwood equations

NC o. - =

h Y=o
= af . 9 @\
— a "AiDp

2’) —— = Rmin —I_l
— O!i — 6

Enthalpy factor

h—n'
\ q

T K

NB. Molar enthalpies from Unisim.

6) R calculation: heuristic rule

Ropt = 1.3 len
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Fenske-Underwood-Gilliland method

7) Gilliland diagram
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Gilliland correlation. (Adapted from Robinson and Gilliland, 1950, pp. 345 and 349 used hy permission.)
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Fenske-Underwood-Gilliland method

8) Optimal feed point: Fenske correlation
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Recycling column

Specifications: You are required to recover:
* Top product: 99.5% of the toluene fed,;
* Bottom product: 99.5% of biphenyl fed.

The ideal stages are 20 (19 trays) and the “feed tray” is at 10t stage (numbered
from the top). The column works at atmospheric pressure with a total condenser.
The efficiency of the column is computed with the formula previously presented
assuming a viscosity of 0.3 cP and using the relative volatility between toluene and
biphenyl.

Additional data (at T = 600 °C) (indicative, to check results):
 Condenser duty ~ 1,0-106kJ/h

o Kettle reboiler duty of 1,4-106 kJ/h

* Biphenyl flowrate ~ 6 kmol/h

.r_lTE‘pqv&
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Close toluene recycle

Pump:
* Pout = 34 bar;

Recycle operator:
* No input data;

Adjust operator:

» Target variable: Benzene productivity (benzene flowrate in the distillate flowrate of
the product column)

» Adjustable variable : F2 flow-rate

NB. Make sure that you “ignore” the two other adjust operators before you connect
the recycle and put the adjust operator on the benzene productivity.
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Tray sizing - Auto Section tool

] Adjust completed T1Adjust3.usc - UniSj R450
e ﬁ‘ g\. 1
e . File Edit Simulation Flowsheet P Tools indow Hel -
1. Ctrl + U or Tools => Utilities: e OE e (B B ok S

43 PFDs. Ctrl+P

]

T PFD - Case (Main)

2. Available Utilities: select Tray Sizing o
> Add utility HA D HE S A (

Ctrl+R

. - - Simulation Balance Tool...
Adjust3.use - UniSim Design R450 2
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Tray sizing - Auto Section tool

3. Select TS = Select Tray section

4. Auto Section

5. See Performance to visualize results
and potential warnings.

4. and 5.
== =R~

Select T5...

4T Tray Sizing: Tray Sizing-1
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Remowve Section
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AT Tray Sizing: Tray Sizing-1
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