Process Systems Engineering

Prof. Davide Manca Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta" Politecnico di Milano

Exercise #2

The kinetic model relative to the main reactions that schematize the process of dealkylation is shown below.

Reaction #1:

$$C_6H_5-CH_3 + H_2 \rightarrow C_6H_6 + CH_4$$

$$A_1 = 3.5E + 10$$

$$A_1 = 3.5E + 10$$

 $E_1 = 50900$ $k_1 = A_1 \exp\left(-\frac{E_1}{RT}\right)$ $R_1 = k_1 c_T \sqrt{c_H}$

$$R_1 = k_1 c_T \sqrt{c_H}$$

Reaction #2:

$$2 C_6 H_6 \rightarrow C_{12} H_{10} + H_2$$

$$A_2 = 2.1E + 12$$

 $E_2 = 60500$

$$\begin{aligned} A_2 &= 2.1 \text{E} + 12 \\ E_2 &= 60500 \end{aligned} \qquad k_2 = A_2 \exp \left(-\frac{E_2}{RT} \right) \qquad R_2 = k_2 c_B^2 \end{aligned}$$

$$R_2 = k_2 c_B^2$$

Activation energies are in kcal/kmol, and the rates of reaction are expressed in kmol/m³/s. We

ask to:

- determine, via numerical integration of the plug-flow model of the reactor, the conversion, the selectivity and the residence time as a function of the operating temperature, by assuming isothermal the reactor, and neglecting the presence of recycles in the evaluation of initial concentrations
- evaluate the adiabatic ΔT of the reaction so to determine if the reactor can be considered isothermal

Carry out the following diagrams:

- conversion/selectivity as a function of reactor temperature
- temperature/conversion by imposing the selectivity of at least 96%
- temperature/residence time of imposing the selectivity of at least 96%
- residence time/flow rates of each of the input streams as a function of the reactor temperature

A suitable range of investigation for the working temperature of this unit is: 600-750 °C.