
© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano 1L5—

Artificial Neural Networks

Davide Manca

Lecture 5 of “Dynamics and Control of Chemical Processes” – Master Degree in Chemical Engineering



© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano 2L5—

Introduction

• ANN: Artificial Neural Network

• An ANN is an engine designed to simulate the operation of

the human brain. It is physically implemented with electronic

components or simulated on digital computers via software (Haykin, 1999).

• The ANN consists of simple elements (neurons, nodes, units).

• The information, i.e. the signals, flows through the neurons by means of 

connections.

• The connections are weighed to adjust the information flow.

• The information, the weighed signals, is loaded in the neurons and an activation 

function also known as transfer function (either linear or non-linear) transforms it 

into the output signal.
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The biological neuron

• The central part of the neuron, the nucleus, sums the input signals coming from the 

synapses, which are connected to the dendrites of other neurons. When the signal 

reaches a limit threshold the neuron produces an output signal towards other 

neurons. In other words, the  neuron “fires”.
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The abstract neuron
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A comparison of neurons and transistors

• The basic unit of the human brain is the neuron.

• The basic unit of a processor, CPU, is the transistor.

• Characteristic times:

 neuron 10-3 s;

 transistor 10-9 s.

• Energetic consumption for a single operation:

 neuron 10-16 J;

 transistor 10-7 J.

• Number of basic elements:

 in the brain 1010 neurons;

 in a processor  109 transistors;

• Synapses number (interconnections) in the human brain: 60,000 billion.

• The brain can be compared to a complex system, for the information processing, 

that is highly non-linear and parallel.
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More in depth…

• An ANN may be considered as a system capable of producing an answer to a 

question or provide an output after an input data.

• The input  output link, which is the transfer function of the network, is not 

explicitly programmed. On the contrary, it is simply obtained through a learning 

process grounded on empirical data.

• Under the supervised method, the learning algorithm modifies the characteristic 

parameters, i.e. weights and biases, so to bring the network forecast near to the 

supplied real experimental values.

• Therefore, the main features of the network come close to those of the brain:

 capability to learn from the experience (measure of in-the-field data);

 high flexibility to interpret the input data (i.e. “noise resistance” or “capability

to interpret noisy data”);

 fair extrapolation capability.
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• The ANN history begins with McCulloch e Pitts in 1943. 

McCulloch was a psychiatrist and a neuro-anatomist,

whilst Pitts was a mathematician. 

The collaboration of these researchers took to the description of the logic calculus of 

the neural network, which combines neurophysiology to mathematical logics. 

• In 1949 Hebb postulated the first law of self-organized learning (i.e. learning  

without a trainer/teacher).

• In 1958 Rosenblatt, in his perceptron work, proposed the first model of supervised 

learning (i.e. learning  with a trainer/teacher).

• The perceptron introduced by Rosenblatt laid the foundations for the following 

neural networks, which can learn any kind of functional dependency.

• In 1969 Minsky and Papert showed mathematically that there are some basic limits 

to the learning capability of a single neuron. This result took the scientific 

community to temporarily leave the ANN research.

• In the ‘80 of last century, the ANN gained new interest after the introduction of one 

or more intermediate levels. Such ANNs, capable of fixing their own errors, 

surpassed the perceptron limits of Rosenblatt and revitalized the research in that 

sector.

The history
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1. Non-linearity: the presence of non-linear activation functions makes the network 

intrinsically non-linear.

2. Analysis and design uniformity: the neurons are a common ingredient for ANNs.

This makes viable sharing both learning theories and algorithms in different 

application fields.

3. Input-output map: the network learns by examples based on a sequence of input-

output data (i.e. supervised learning). No a priori assumption is made on the model 

parameters.

4. Adaptivity: the ANN can adapt its weights to the changes of the surrounding 

environment. In particular, an ANN trained to operate in a given environment, can 

be trained again to operate in another one. In addition, if the network is operated in 

a dynamically evolving environment, it can be designed to change/modify its 

weights in real-time (e.g., adaptive elaboration of the signals, adaptive control).

5. Parallelism: thanks to its structure, an ANN can be implemented directly at the 

hardware level for specific high-efficiency computational purposes.

Main features
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Main features

6. Fault tolerant: an hard-wired ANN shows a good tolerance to faults. Its performance 

deteriorates slowly in case of malfunctions. This is due to the high relocation of the 

information among the neurons, which reduces the risk of catastrophic faults and 

guaranties a gradual deterioration of its performance.

7. Neuro-biological analogy: the ANN design is motivated by its analogy with the 

human brain that is the living proof that the parallel, fault tolerant, computation is 

not only physically viable, but also fast and powerful.
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Network features

• There are three issues that describe and

characterize an ANN:

 network architecture. Structure and typology

of the node connections, number of

intermediate levels;

 learning method. Evaluation of the intensity

of the node connections (weights and

biases computation);

 functional dependency the link the input

to the output of the neuron.

Activation function typology.
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Network architecture

• The input nodes are the data source. They are not 

considered as a real level as they do not contribute to the 

data processing.

• The output nodes produce the final answer of the 

network.

• The nodes belonging to the intermediate hidden layers (if 

present), together with the output nodes, transform the 

input signal into the output one.

• The number of nodes for each level, the number of 

hidden layers, and the connections among the nodes 

define the architecture of the ANN.
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Network architecture

• There are several ANN typologies:

 networks without hidden layers, i.e. input-output networks;

 networks with one or more hidden layers;

 fully connected networks;

 partially connected networks;

 purely feedforward networks, unidirectional flow;

 recursive networks with feedback flow;

 stationary networks;

 adaptive networks, with dynamic memory;

 …
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Network architecture

• The most basic structure of an ANN consists of:

 one input layer;

 one or more hidden layers;

 one output layer.

• Every layer has a variable number of nodes. Often, the whole ANN structure is 

triangular moving from the top (input) to the bottom (output).

• Cybenko, 1989, showed that a single hidden layer is sufficient to describe any 

continuous function.

• Haykin, 1992 (1999), added that the choice of a single hidden layer does not always 

produce the best possible configuration (mainly in case of identification of highly 

non-linear processes).

George Cybenko Simon Haykin
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Learning methods

• The network training, which consists in adjusting (i.e. evaluating) the optimal 

synaptic weights, can happen according to two distinct methods:

 SUPERVISED TRAINING (with trainer/teacher)

• During the training, a trainer/teacher supplies the correct answers respect to an input 

data set.

• The weights are modified as a function of the error made by the network respect to 

the real output data.
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Learning methods

 UNSUPERVISED TRAINING (without trainer/teacher)

• There is not a trainer/teacher. Therefore, the feedback contribution is missing. 

• The network discovers independently the correlations among the supplied input data.

• The weights change along the training procedure according to an a priori rule which 

does not use the error respect the real environment (i.e. process).

• The method uses a measure that is independent of the specific problem.

• Some heuristic rules may be used to transform the external input signal into either an 

“award” or a “punishment”.

External
environment

ANN
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Activation function

• The activation function, j(n), defines the neuron output as a function of the activity 

level of its inputs.

• Step (or threshold)

function

• Linear piece-wise

(or ramp) function
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Activation function

• Sigmoid function

• Hyperbolic tangent

function

N.B.: the activation functions take over values belonging to the 0,…1 or -1,…1

intervals. This is consistent with the fact that the inputs to the network are 

normalized to keep limited and controlled the signals flowing in the network.

( )
( )

1

1 exp
j n

n


 -

( )
( )

( )

1 exp
Th

2 1 exp

nn
j n

n

- 
  

 



© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano 18L5—

BP learning

• The most renowned method for supervised training is

the Error Back Propagation Algorithm, BP.

• This algorithm comprises two phases:

 forward phase;

 backward phase;

• In the forward phase, the learning patterns

(i.e. input-output data pairs) are presented to the

input nodes. The network response depends on the

hidden layer(s) downwards the output nodes. During this phase both weights and 

biases remain constant (i.e. unchanged).

• In the backward phase, the error between the real process and the network output 

is first evaluated and then back propagated (upwards) through the nodes of the 

different layers. Suitable update formula modify the weights and biases up to the 

first input layer of the network.
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BP learning

• Somehow, the weights update along the training 

procedure may be seen as a parameter regression

that is the optimization of an objective function that

minimizes the average error made on the set of

learning patterns.

• A critical point is the overfitting problem (aka overlearning).

The risk is that the network learns in an optimal way the input-output patterns 

provided along the training procedure and loses the generalization capability to deal 

with input data that have not been supplied yet.

• A validation procedure of the training procedure

(cross-validation) is mandatory. This is based on a 

set of input-output patterns different from that

used during the training procedure.
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Further parameters

• The training procedure is based on two further parameters, both limited in the 0,…1

interval:

 learning rate, a

• it determines the learning rate of the ANN: high values increase the learning process 

but may bring on convergence problems and instability.

 momentum factor, b

• it accounts for the dynamic evolution

of the weights: its role consists in increasing

the procedure velocity while keeping high values

of the learning rate without incurring into

oscillations and convergence problems.
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An example

Neural network type:   Back propagation with momentum factor
Activation function:   Logistic sigmoid + linear function
Learning Algorithm :   History Stack Adaptation

4  ! Layers  number (including input and output layers)
2  ! Neurons number at level: 1
4  ! Neurons number at level: 2
2  ! Neurons number at level: 3
1  ! Neurons number at level: 4

---------------------------------------------------------
200 ! Total learning patterns
.50000000 ! alfa
.90000000 ! beta
.10000000 ! mu

---------------------------------------------------------
Biases for each layer
Layer n.   2   -1.10191428411417    -.306607804280631   .396983628052738   .229701066848763E-01  
Layer n.   3    1.32438158863708     .895365411961350
Layer n.   4    12.1461254510109
---------------------------------------------------------
Weights for each layer
Layer n.   1 --> 2
-.522050637568751 .247668247408662 1.36848442775682 .784256667945155           
-2.36688633725843 -2.47312321369078 1.81072640204618 .871974901958030
Layer n.   2 --> 3
1.78023653514858 1.68340336532185
-.751951327532474 .906457768573295
-1.66948863690154 -.743060896398274
-.766335553627057 -.263315123659310
Layer n.   3 --> 4
-4.61959708139503    
-2.87806024443973    

End of neural network
---------------------------------------------------------
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Identification algorithms

• LOCAL SEARCH

 First order methods

• Gradient (steepest descent)

• rather simple;

• possible local minima;

• possible divergence along the search.

 Second order methods

• Levenberg-Marquardt

• more complex;

• possible local minima;

• higher memory allocation;

• longer training times;

• deeper minimization of the objective function.
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Identification algorithms

• GLOBAL SEARCH

 Simulated Annealing;

 Genetic algorithms;

 Tabu search;

 Multidimensional specific methods (robust methods).

 Features:

• complex implementation;

• high cost in terms of memory and CPU time;

• Identification of the global minimum.
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Training methods

• Once the learning set is available, it is time for the network training.

• The provision/implementation of a whole set of patterns is called epoch.

• The training is based on the iterative provision of the epochs according to a 
stochastic sequence of the patterns to avoid any specific learning and any loss of 
generality.

• PATTERN MODE training

 The update of both weights and biases is made after every supplied pattern to 
the network. Every pattern undergoes a forward and backward procedure. If a 
training set comprises N patterns, then there are N weight and bias updates for 
each epoch.

• BATCH MODE training

 The update of both weights and biases is made only after having supplied all 
the patterns that is at the end of the epoch. The forward procedure supplies N
patterns. The N local errors are stored together with their local gradients. 
Eventually, these values are averaged and the backward procedure is carried 
out.
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Convergence criteria

There are not universal criteria to assess the network learning.

• It is worth focusing the attention on the identification degree respect to the set of 

the training pattern. For instance, it is possible to check:

 If the weights and biases vary a little from an iteration and the following one;

 The average error;

 The decrease of the average error from an iteration and the following one.

• The real risk for these control

techniques of convergence

is the overfitting of

the network.
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Overfitting examples

• Network of simulated moving-bed reactors for the methanol synthesis.
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Convergence criteria

• It is worth focusing on the identification quality respect to the set of validation 

patterns. The average error is checked respect to the validation data set rather than 

the learning data set.

error

epochs

learning set

validation set

Epoche (log)

13° epoca 31° epoca
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Overfitting removal

• Network of simulated moving-bed reactors for the methanol synthesis.
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Static and dynamic approach

• An ANN can identify the link (i.e. dependency) between the input and output 

variables of the black-box process.

• The input-output dependency may refer to some stationary conditions or better to 

some functional dependencies that do not depend neither explicitly nor implicitly 

on the time.

• In turn, the network can identify the dynamic behavior of a process. In this case, the 

network must be able to describe the system dynamics respect to external 

disturbances on the input variables.

• As it happens for the ARX, ARMAX, and NARX systems, the input variables to the 

network are not only those of the process inputs but there are also some output 

variables referred to past values.

 ˆ( ) ( 1), ( 2),......, ( ), ( 1 ), ( 2 ),......., ( )a bk k k k k k k - - - - - - - - -y y y y n u u u nj   
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Time 
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Dynamic identification of processes

• Example: Steam Reforming process.

CH4 + H2O   CO + 3H2 DH = +206 kJ/mol 

CO + H2O   CO2 + H2 DH = -41 kJ/mol 

camino ventilatore

ingresso acqua

uscita acqua

alimentazione

bruciatori 

ausiliari

ingresso 

vapore

uscita 

vapore

ingresso vapore

uscita vapore

bruciatori

ingresso acqua

Network input: manipulated variables and measurable disturbances

Network output: controlled variables

natural
gas

Furnace

TTTT

Control 
System

FT

setpoint

fuel
steam

exhaust

syn-gas

FT

Special Cr/Ni alloy pipes resistant 
up to 1150 °C.
Granular catalyst: Nickel 
supported on Alumina.
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Open-loop analysis of the system

Hydrogen flowrate  [kmol/s]

Disturbance on the furnace fuel flowrate

time  [min]

10 15 20 25 30

time  [min]

2.48e-03

2.52e-03

2.56e-03

2.60e-03

2.64e-03

2.68e-03

10 15 20 25 30

Disturbance on the dry flowrate

Main features of the process to be identified:

Overshoot presence, slow dynamics, and fast dynamics.
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Open-loop analysis of the system

N.B.: a disturbance on the inlet gas temperature has a delayed effect on the 

outlet gas temperature from the reactor. It is necessary to account for this 

delay in the definition of the ANN structure in terms of time delay, .

1036

1038

1040

1042

1044

1046

1048

1050

1052

1054

1056

10 15 20 25 30 35

time - min

Outlet gas temperature  [K]

Step on the inlet temperature

Step on the fuel flowrate

Step start 
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• ANN features: two separate (and dedicated) MISO networks.

N.B.: the second MISO network implements (instead of the reactor outlet 

temperature) the produced hydrogen flowrate as output variable.
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PC : portata di combustibile

PV : portata di vapore

PS : portata di secco

Tin : temperatura di ingresso

Tout: temperatura di uscita

Dynamic identification of a system
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