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Introduction

• The mathematical model of a process unit or of a whole process is of paramount 

importance for engineering applications.

• The numerical model of a process can be applied to chemistry, electronics, 

mechanics, economics, …

• A model can be used to find quantitative answers

without measuring real processes or making experiments.

• Another important feature consists in the capability of

predicting the future response of the

system  model-based multivariable control; 

process optimization.
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Some questions

• How can we build a mathematical model for prediction purposes?

• How to use the experimental data (if available) for the model synthesis?

• How to assess the reliability and consistency of the model?

• The mathematical models can be classified into two classes:

 Basic models;

 Empirical models.

• BASIC MODELS: they are based on an in-depth knowledge of the physical features of 

the system. Conservation laws: mass, energy, momentum. First-principle models. 

Deterministic models.

• EMPIRICAL MODELS: the process is not described by any physical laws. Conversely, it 

is defined by means of quantitative observations, experiments, and measures.
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Black-box models

• A black-box model is completely independent from

the physics of the process to be identified.

• Theoretically, it is possible to build (i.e. identify) a 

black-box model without knowing anything of

the process to be modeled.

• Obviously, an in-depth knowledge of the process

allows increasing the quality of the identified model.

• Usually, it is necessary to find a balance

between the prediction quality

of the model and its complexity.
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When is the identification recommended?

• If one is ignorant about the process to be modeled;

• If the complexity of the process to be modeled is high;

• If we need fast solutions:

 to carry out the model;

 in the simulation of the model, i.e. CPU time.

• If we need a model that does not produce

mathematical errors (floating point exceptions).
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Signals and systems

• It is worth introducing the concepts of signal and system

according to the nomenclature introduced by Bosh e Klaw, 1994.

• SIGNAL

 It is something holding/bearing information.

 Deterministic signals: they are completely defined

for instance by a mathematical expression;

 Stochastic signals: the exact future value of the signal cannot be predicted. The 

signal is described by a statistical approach, for instance in terms of mean value 

and standard deviation.

 A signal may be continuous or discrete.
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• SYSTEM

 It is a set of relationships between variables and signals.

 The system is an ideal representation of the real process.

• STATE-SPACE MODELS

 The state of a dynamic system contains the whole past history of the process;

 Therefore, it is possible to predict the future behaviour of the system without 

having to know the past history of the process.

 Mathematically, this means that the system features a number of state 

variables, xi, that contribute to its dynamic description by means of a system of 

n differential equations of the first order.

 n is the “order of the system”.

Signals and systems



© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano 8L4—

• STATE-SPACE MODELS

 Besides the state variables, there are the input variables, ui, which are the so 

called “driving forces” of the system.

 The solution of the system of n differential equations provides the whole picture 

of the future behaviour of the system.

 To know the xi values may be of reduced interest as the state variables are not 

necessarily observable.

 The most interesting variables, yi, are the output variables that depend on the xi

and ui variables.

 The deterministic and continuous formulation of a state-space system is:

      

      

,

,

t t t

t t t





x G x u

y H x u

Signals and systems
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• STATE-SPACE MODELS

 The deterministic and discrete of a 

state-space system is:

• BLACK-BOX MODELS

 As aforementioned, the black-box models exchange information with the 

observer only by means of signals. Therefore, the observer cannot know the g

and h functions that rule/characterize the system.

 Given a black-box model, the only pieces of information available to the 

observer are the input and output signals. Consequently, the state variables, x, 

are unknown.

 A black-box model does not use any state variables.

      

      

1 ,

,

t t t

t t t

 



x g x u

y h x u

Signals and systems
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Black-box models

• A black-box model is characterized by the following mathematical formulation:

• If the model is dynamic then the system output depends on the past history of the 

inputs and outputs:

• In order to successfully carry out the identification procedure of the functional 

dependency, f, it is worth introducing some adaptive parameters, p.

 system output system input f  y f u

 present outputs past outputs, past inputs f  ,now old oldy f y u

 present outputs past outputs, past inputs, parameters f  , ,now old oldy f y u p
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• The p parameters may be used as independent variables of the identification 

procedure (i.e. degrees of freedom) with the objective that the black-box model 

describes in the best way the input-output data coming from the real process.

• A possible improvement of the black-box model, f, consists in accounting for the 

error, e, which measures the distance of the identified system from the real process.

past outputs, past inputs, 
present outputs

past errors, parameters

 
  

 
f  , , ,now old old oldy f y u e p

inputs outputs

disturbances

Black-box models
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System identification

• The system identification calls for three steps:

1. Selection of the set of inputs, u, outputs, y, errors, e, in terms of number of 

unknowns and length of the time interval;

2. Selection of the regressor, f;

3. Model identification in terms of model regression respect to the observations. 

This is done by means of suitable parameters that play the role of independent 

variables (i.e. degrees of freedom).
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Regressors

• In general, a model has not to necessarily consider all the observable/measurable 

inputs and outputs of the process.

• In case of a system to be used for control purposes may be suitable to consider just 

the controlled, manipulated variables and possibly the measurable disturbances.

• Usually, we have:

 r output variables, y;

 m input variables, u.

• The error vector is:

• The r + m variables of the model are sampled (i.e. measured and stored) every 

sampling time, ts. 

• These variables describe the system history (and take into account the 

attenuation/fading effect of the signal with time).

real e y y
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• The system to be identified has the following formulation:

• We introduce the  vector whose components are called regressors:

• If d is the total number of system variables, then the length  of the  vector is the 

total order of the model:

         

       

       
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r

m

r
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e r r e

t y t y t n y t y t n

u t u t n u t u t n

e t e t n e t e t n

    

   

   

y f

         

       

       

1

1

1

1 1

1 1

1 1
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             1 , , , , 1 , , ,
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r

m

r

y r r y

u m m u

T

e r r e

t y t y t n y t y t n

u t u t n u t u t n

e t e t n e t e t n

    

   

   



1

d

i

i

n


 

Regressors
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• It is worth considering that the inputs may have a delayed effect on the outputs. This 

can be accounted for by introducing the so-called time delays, nki, in the system 

model for each m input:

         

       

       

1

1 1 1

1

1 1

1 1

1 1

[ 1 , , , , 1 , , ,

             1 , , , , 1 , , ,

             1 , , , , 1 , , ]

r

m m m

r

y r r y

k k u m k m k u

T

e r r e

t y t y t n y t y t n

u t n u t n n u t n u t n n

e t e t n e t e t n

    

       

   



Regressors
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Function f

• The f function, through the p parameters, maps the

regressors vector into the y variables:

• We can have either linear or non-linear mapping regressors (i.e. functions).

• The simplest model for the f function is:

• Likewise, if p is a matrix then y is a vector.

• If we hypothesize that the output vector, y, is the sum of two terms referred to a 

deterministic contribution (not disturbed) r and a disturbance contribution w, we 

have:

    ,t t   y f p

   y t t p 

     t t t y r w

N.B.: p is  a row vector whilst  is a column vector.
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• In the formulation                                    the w term represents the contribution to the 

output variable, y, which cannot be deterministically modelled.

• w produces a stochastic effect on the system. w is the noise and/or the system 

deviation from the ideal linearity.

• The deterministic contribution to the model can be expresses as follows:

 where G is a rational transfer function matrix in the translation operator q:

 The plain representation of the problem is:

     t t t y r w

     ,t q t G p ur

 
 

 

1

1 2

1

1

,
1

k k k u

un

n

q q qq
q

q q q r

r

    



  
 

  

n n n n

n

b b bB
G p

A a a

         1 11
un k n k ut t t t t

r r          a a n b u n b u n nr r r

Time delay

Function f
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• Likewise, it is possible to model the disturbance contribution:

 where H is a rational transfer function matrix in the translation operator q:

 The plain representation of the problem is:

• Eventually, the general formulation of the problem becomes:

     ,t q t H p ew

 
 

 

1 2

1 2

1

1

,
1

e

en

n

q q qq
q

q q q w

w

 



  
 

  

n

n

d d dD
H p

C c c

         1 11 1
en n et t t t t

w w         c c n d e d e nw w w

 
 

 
 

 

 
 

q q
t t t

q q
 

B D
y u e

A C

BOX-JENKINS 

formulation

Function f
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• It is worth observing that the Box-Jenkins formulation depends on 5 structural 

parameters:

• and on 4 adaptive parameters:

• A simplification of the Box-Jenkins model can be obtained by imposing that:

• The model becomes:

• The ARMAX acronym derives from:

 AUTOREGRESSIVE

 MOVING AVERAGE

 EXOGENOUS INPUT

            u e kw rn n n n n

         a b c d

   q qA C

           q t q t q t A y B u D e ARMAX model

   q tA y

   q tD e

   q tB u
This is an “extra input” that in economic 

terms is defined as “Exogenous Input”

Function f
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Regressors

• The regressors vector in case of ARMAX models is:

• If we remove the moving average term we get the ARX model:

• Eventually, if we set ny = 0 in the ARX model we get a FIR (Finite Impulse Response) 

model:

             [ 1 , , ;  1 , , ;  1 , , ]ARMAX y k k u et t t t t t t        y y n u n u n n e e n

         [ 1 , , ;  1 , , ]ARX y k k ut t t t t      y y n u n u n n

     [ 1 , , ]FIR k k ut t t    u n u n n
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Identification models

B

A

D

C


u y

e

B

D


u y

e

1

A

BOX-JENKINS ARMAX

B
u y

B
u y

1

A

ARX FIR
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ARX models

• The mathematical models presented so far may have a scalar, vector, or mixed 

structure:

 SISO: Single Input – Single Output

 MISO: Multiple Input – Single Output

 MIMO: Multiple Input – Multiple Output

• FEATURES

 The ARX model is linear both in the regressors and parameters.

 As such, it cannot describe multiple steady states;

 By definition, it can not describe non-linear dynamics;

 Its identification is rather simple;

 The CPU time for a model prediction is moderate.

• Example of an ARX SISO

             1 2 1 21 2 1 2
y un y n uy t a y t a y t a y t n bu t b u t b u t n             
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ARMAX models

• FEATURES

 An ARMAX model is linear in the input, output, and error variables.

 The prediction capability of ARMAX models is better than the ARX ones thanks 

to the presence of the error terms, e;

 The error term can, somehow, account for:

• Process non-linearity;

• Unmeasured disturbances;

• Measures noise.

 It cannot account for multiple steady states;

 The model outputs are evaluated with the scalar product

between the regressors vector and the parameters one;

 The ARMAX model is not linear in the regression parameters.

   ,y t t p p
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ARMAX models

• FEATURES

 The evaluation of the model parameters, p, calls for a non-linear regression 

procedure  higher CPU time.

 The CPU time for a prediction is higher than that of an ARX one.

 The presence of the error term                       calls for the in-the-field 

measurement of the real output variables. As such, an ARMAX model is not 

recommended/suitable for the prediction on n steps forward.

• Example of an ARMAX SISO

             

     

1 2 1 2

1 2

1 2 1 2

                                                                             1 2

y u

e

n y n u

n e

y t a y t a y t a y t n b u t b u t b u t n

d e t d e t d e t n

              

     

real e y y
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Non-linear models

• Going on with the concept of function f interpreted as the

map of the regressors vector  in the output

variables y through the parameters p:

we can implement/adopt any non-linear f function.

• Usually, it is worth adopting the expansion of a base function

such that: 

• One of the most used forms is the polynomial expansion of the regressor elements:

N.B.: this expansion is linear in the parameter but is non-linear in the N regressors.

    ,t t   y f p

  kf t

    , k kk
t p f t   f p 

 
1 1 1

N N N N N N

k k k k l k k l m

k k l k k l k m l

t         
     

     y
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• Another alternative is to use functions fk obtained from

the parameterization of a single basis mother function, k.

• Usually, k is further parameterized by means of

two distinct parameters:

 k refers to either a scale or directional property;

 k refers to either a position or a translation.

• For instance, if k = cos(x), the expansion becomes a Fourier series where

k are the frequencies and k the phases:

• Another basis mother function usually used is the sigmoid:

        , ,k k k k kf t tk   k      

           , , , cosk k k k k k k kk k k
t p f t t t k             f p   

       
   

1
, , ,

1 k k
k k k k k kk k k t

t p f t t
e

 
 k   


    


  f p


  

Non-linear models
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NARX models

• Similarly to the linear models, it is possible to introduce the non-linear models: 

NARMAX, NARX, NFIR. 

• As far as the NARX models are concerned we can build them starting from both 

the input and output vectors trough two consecutive mappings:

 Firstly, we build a non-linear polynomial mapping, g, of the regressors vector:

 Secondly, the new regressors vector, h,

is linearly mapped in the output vector, y:

    t g th 
1 1

1 1 1

2 1 2

1

2 1 2 2

2 1 2

N N

N

N

N N N

N

N N N

h 

h 

h  

h  

h  

h  

h  









 















   y t t p h
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NARX models

• FEATURES

 Since the model structure is linear in the parameters then it is sufficient to 

use an algorithm based on the minimization of the squared errors to 

determine the vector p;

 Therefore, the computation effort for the identification is absolutely 

analogous to that done in the case of the ARX models;

 Thanks to its intrinsic non-linearity a NARX model can describe multiple 

steady states;

 it does not call for any in-the-field measures of the output vector, y, for 

prediction purposes as it does not implement the error terms, e;

 A NARX model, if not properly structured, may produce

unbounded output with an evident decay

of the predictive capabilities of the model.
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NARX models

• Example of a NARX SISO

 Let us consider as an example a NARX SISO based on the quadratic polynomial 

expansion of a regressors vector with four elements (i.e. two inputs and two 

outputs):

the NARX system is:

 The model is based on 14 parameters despite the reduce dimensions.

 There are problems of overparameterization. For instance, a third-order (i.e. 

cubic) polynomial expansion with a regressors vector of 6 elements would 

produce a model with 83 parameters.

 It is highly recommended to identify suitable computational algorithms 

capable of removing the negligible coefficients  Stepwise algorithms.
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Identification procedure

• Assessment of the system limits and the necessary variables: as a function of the 

model specifications we can define the the exact number of input and output 

variables. We also define/identify their variability range to organize/create a 

suitable learning domain for the following identification procedure. The variables are 

selected as a function of the physical/empirical knowledge of the process, 

correlation indexes, and trial & error.

• Design of experiments: once the model variables are defined we have to assign the  

sampling frequency. Moreover, it is worth that all the input variables can be 

disturbed. It is also worth considering if it is possible to disturb the variables that not 

directly affect the operation of the system to be identified.

• Selection of the model structure: we have to define the length of the regressors 

vector, the model order respect to any model variable, the linearity or

non-linearity of the model respect to both the regressors

and the parameters.
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• Parameter identification: it is now necessary to identify/define the numerical 

algorithm for the evaluation of the model parameters. We have to differentiate 

between deterministic (minimization of the computed error) and stochastic models 

(method of maximum likelihood).

• Simulation and validation: once the model is identified, it is worth testing its 

predictive capability and by providing a set of input data not previously used. 

Indeed, the model validation procedure uses a set of validation data (cross-

validation set) that is suitably chosen a priori and kept separate from the

training set (learning set).

Identification procedure
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Sampling time

• To produce and store the two sets of input data for the system identification

and validation it is necessary to define the time interval when to

measure those data.

• Generally, the sampling time is a fraction, 5%-20%, of the

characteristic time of the system.

• Shannon theorem: if one samples a signal at a frequency at least

double than the maximum frequency of the system, it is possible to

reconstruct the original signal without any information loss.

• If the Shannon theorem is not respected then it is possible to incur

in aliasing problems. This means that it is not possible to reconstruct

the original signal from the sampled data.

Claude Shannon 
1916-2001
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• Having defined the sampling time, ts, of the signal, if it is too high 

then it is not possible to describe the real process dynamics.

• If ts is too short:

 there is probably a large amount of process data that

must be manipulated without achieving any improvement in

the information they yield;

 there is the risk of increasing the sampling of the noise;

 too similar data induce numerical problems in the identification algorithm;

 the CPU time increases for both

the identification and

prediction procedures;

 The in-the-field measuring cost

may increase.

Sampling time
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Data preprocessing

• Once the in-the-field data have been sampled and stored it is possible to apply some 

suitable mathematical operators to dampen the excessive oscillations (for instance 

moving average).

• It possible to apply low-pass and high-pass filters

to remove the sudden variations beyond

the standard operating limits.

• In addition, it is possible to identify and remove

the so-called outliers by suitable techniques

of statistical analysis.

• DETREND: the mean value is subtracted to the data.

By doing so, the sampled variables show only the

deviation from the stationary values or more

in general from the average operating conditions.

This allows also using the model for other

stationary points (although the quality of

the model may decrease).
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Disturbance sequence

• The input-output data collection for both the identification and validation 

procedures happens by disturbing the process input variables according to 

different techniques that try to properly cover the operating conditions.

• PRBS: Pseudo Random Binary Sequence. One has to choose two band limits, xMIN ,

xMAX, of the variable to be disturbed, x, and these values are randomly varied 

between such values with a binary sequence (0 = xMIN , 1 = xMAX). The output 

vector is then measured after that sequence.
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PRBS

1. The input variables may take only two values, with the same amplitude and 

opposite sign, Du, respect to the stationary conditions (assumed as reference 

values at 0 after the detrend procedure).

2. Moving from a positive to a negative condition, and vice versa, happens in a random

way so to produce in the sequence the so-called white noise (i.e. with null average).

3. The disturbance on the input variables is given every n sampling time, ts, with a 0.5

probability of changing the sign.

4. Usually, the interval nts is equal to 20%

of the time taken by the system to

reach a steady-state condition

(i.e. complete the transient).

5. The amplitude Du of the disturbance

must be sufficiently high to avoid

any measurement disturbance

induced by the system noise.

Recommended for ARX
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PRS

• The main characteristic that differentiates a linear system from a non-linear one is 

the proportional dependency of its response after a given disturbance amplitude.

• In case of linear system, if the input amplitude doubles then also the output 

amplitude doubles. Not the same in case of non-linear system.

• In a PRS, Pseudo Random Sequence, the input variable value is assigned by summing 

at the present value a random quantity whose distribution is uniform in the

[Du, Du] interval.

• The input variables undergo a

random disturbance that is a

constant fraction (in absolute

value) of the maximum variability

interval (15-20%).

Recommended for ARMAX
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Completely random sequences

• A further generalization of the PRS sequence is assigning to the input variable some 

random increments within a predefined variability range [Du, Du].

• There are few precautions to be respected:

 limit the maximum variation increment for each disturbance;

 keep the input variables within the range of consistent operability (i.e. lower 

and upper bounds).

Recommended for NARX and ANN
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Parameters regression

• The model parameters, p, are evaluated by a regression procedure.

• In case of deterministic signals, the numerical problem to be solved is:

where ny is the number of output variables and ns is the sampling number.
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Model validation

• Once the model parameters have been evaluated, it is necessary to assess the 

system quality respect to a data set different from the one used in the identification 

procedure.

• This is the cross-validation procedure.

• In addition, it is necessary to examine any possible

system overfitting that is an excessive model specificity

to the learning data set.

• It is worth testing also the extrapolation capability

of the model.

• The validation procedure can be carried out as follows:

 One step ahead: the procedure uses the outputs

of the real process step by step;

 Predictive mode: the system (i.e. model) outputs are

used to carry out the simulations step by step without

relying on the real process data (pure extended simulation).
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• The goodness of a model is assessed respect to:

 the capability of reproducing the real process dynamics;

 The model stability respect to external disturbances.

• CROSS VALIDATION INDEX: allows to assess the goodness of
the model (nCVS = number of validation data)

• The more CVI is near to zero, the better the model validation.
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Model validation
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Models comparison

• To identify/define the optimal order of the model (and avoid any overfitting 

phenomenon) or carry out comparisons among models with different structures 

(e.g., ARX, ARMAX, NARX, …) it is possible to adopt some statistical criteria that 

account for and find a compromise among:

 model order;

 number of input and output variables;

 parameters number.

• The four most known comparison criteria are:

 AKAIKE INFORMATION CRITERION:

 FINAL PREDICTION ERROR CRITERION:
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 BAYESIAN INFORMATION CRITERION:

 LAW OF ITERATED LOGARITHMS CRITERION:

ns sampling number, np parameters number and
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