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Dynamics of forced and
unsteady-state processes

Davide Manca

Lesson 3 of “Dynamics and Control of Chemical Processes” – Master Degree in Chemical Engineering
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Forced unsteady-state reactors

• Forced unsteady state (FUS) reactors allow reaching higher conversions than 

conventional reactors.

• Two alternatives:

 Reverse flow reactors, RFR;

 Network of reactors: simulated moving bed reactors, SMBR.

• Within a SMBR network, the simulated moving bed is accomplished by periodically 

switching the feed inlet from one reactor to the following one.

• APPLICATION: Methanol synthesis (ICI patent).

 Operating temperature: 220-300 °C;

 Pressure: 5-8 MPa;

 CO = 10-20%; CO2 = 6-10%; H2 = 70-80%.
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Forced unsteady-state reactors

• Catalytic exothermic reactions can be carried out with an autothermal regime.

• FUS reactors are mainly advantageous when either the reactants concentration or 

the reactions exothermicity are low.

• There is an increase of both conversion and productivity that allows:

 Using smaller reactors,

 Lower amounts of catalyst.
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Methanol synthesis in forced unsteady-state 
reactors

• The methanol synthesis reaction is:

• The reaction takes place with a reduction of the moles number. Therefore, the 

reaction is carried out at high pressure.

• In the past, the methanol plants worked at 100 ÷ 600 bar.

• Nowadays, methanol plants work at lower pressures (50 − 80 bar).

• In the low-pressure plants, the following reactions are important too:

2 32 90.769 kJ/molRCO H CH OH H

2 2 2

2 2 3 23

CO H CO H O

CO H CH OH H O
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Reverse Flow Reactors

• Valves: V1, V2, V3, V4 allow periodically inverting the feed direction in the reactor.
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RFR: first–principles model

Equations #Eq. Eq. type Variables

Gas phase enthalpic 

balance
1

Partial 

derivative

Solid phase enthalpic 

balance (catalyst)
1

Partial 

derivative

Gas phase material 

balance
nComp

Partial 

derivative

Solid phase material 

balance (catalyst)
nComp

Non-linear 

algebraic


1...nComp  i

   , ,



G,iSG yTT

 
1...nComp  i1...nComp  i

   ,   , ,



S,iG,iSG yyTT

 
1...nComp  i1...nComp  i

   ,   , ,



S,iG,iSG yyTT

 
1...nComp  i1...nComp  i

   ,   , ,



S,iG,iSG yyTT

2 2nComp 2 2nComp



© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano 7L3—

RFR: methanol synthesis
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RFR: methanol synthesis



© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano 9L3—

Temperature profile once the pseudo-stationary condition is reached

Reverse Flow Reactors
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Reverse Flow Reactors

Concentration profile once the pseudo-stationary condition is reached
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Simulated Moving Bed Reactors

Step 1: 1g2g3Step 2: 2g3g1Step 3: 3g1g2

1

2

3
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Simulated Moving Bed Reactors

• Kinetic equations corresponding to a dual-site Langmuir-

Hinshelwood mechanism, based on three independent 

reactions: methanol formation from CO, water-gas-shift 

reaction and methanol formation from CO2:

Velardi S., A. Barresi, D. Manca, D. Fissore, Chem. Eng. J., 99 117–123, 2004
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Simulated Moving Bed Reactors

• Reaction rates for a catalyst based on Cu–Zn–Al mixed oxides

Velardi S., A. Barresi, D. Manca, D. Fissore, Chem. Eng. J., 99 117–123, 2004
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Simulated Moving Bed Reactors

Velardi S., A. Barresi, D. Manca, D. Fissore, Chem. Eng. J., 99 117–123, 2004
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Simulated Moving Bed Reactors

• After a suitable number of switches the temperature profile reaches a pseudo-

stationary condition.

High switch times Low switch times
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SMBR: the thermal wave
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SMBR: open loop response

Velardi S., A. Barresi, D. Manca, D. Fissore, Chem. Eng. J., 99 117–123, 2004
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SMBR: open loop response

Velardi S., A. Barresi, D. Manca, D. Fissore, Chem. Eng. J., 99 117–123, 2004
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Disturbance stop after 195 switches Disturbance stop after 310 switches

There are more periodic stationary conditions

SMBR: open loop response

Velardi S., A. Barresi, D. Manca, D. Fissore, Chem. Eng. J., 99 117–123, 2004
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The control problem

• FEATURES

 The system may suddenly diverge to unstable operating conditions (even chaotic

behavior);

 The network may shut-down;

 The reactors may work in a suboptimal region.

• PROBLEM

 The reactor network should work within an optimal operating range;

 Such a range is often narrow and its identification may be difficult.

• SOLUTION

 A suitable control system must be synthesized and implemented on-line to avoid

both shut-down and chaotic behaviors;

 An advanced control system is highly recommended;

 Model based control  Model Predictive Control, MPC.
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Numerical modeling

• The model based approach to the control problem calls for the implementation of a

numerical model of the network that will be used for:

1. Identification of the optimal operating conditions;

2. Control purposes, i.e. to predict the future behavior of the system.

• The numerical model is based on a first principles approach:

 The reactors are continuously evolving (they never reach a steady-state

condition)  time derivative;

 Each PFR reactor must be described spatially  spatial derivative;

 The reacting system is catalyzed (therefore it is heterogeneous). Consequently,

an algebraic term is required  PDAE system.

 The PDAE system is spatially discretized  DAE system.

 A total of 1067 differential and algebraic equations must be solved to

determine the dynamic evolution of the network.
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Mathematical tricks…
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Numerical solution of the DAE

Boolean matrix that shows the 
presence indexes of the 
differential-algebraic system

Specifically tailored numerical 
algorithm for tridiagonal block 
systems
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Numerical solution of the DAE

Boolean matrix that shows the 
presence indexes of the 
differential-algebraic system

Specifically tailored numerical 
algorithm for banded systems
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BzzDAEFourBlocks

Numerical solution of the DAE

Algebraic equations
Algebraic variables

Differential equations
Algebraic variables

Differential equations
Differential variables

Algebraic equations
Differential variables
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• Simulation time: 4000 s

• Switch time: 40 s

• Spatial discretization nodes: 97

• Number of equations per node: 11

• Total number of DAEs: 1067

• CPU: Intel® Pentium IV 2.4 GHz

• RAM: 512 MB

• OS: MS Windows 7 Professional

• Compiler: COMPAQ Visual Fortran 6.1

+ MICROSOFT C++ 6.0

Numerical solution of the DAE
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Numerical simulation
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Numerical simulation
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Parametric sensitivity study

• Variability interval of the analyzed process variables

Variable Interval

Inlet gas temperature, Tin [K] 300÷593

Inlet gas velocity, vin [m/s] 0.0189÷0.0231

Switch time, tc [s] 1÷350
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Parametric sensitivity study
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Parametric sensitivity study
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Parametric sensitivity study
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Need for speed

• THE POINT: to simulate 100 switches of the inlet flow with a switch time of 40 s

(total of 4,000 s) the DAE system, comprising 1067 equations, takes about 95 s of

CPU time on a workstation computer.

• PROBLEM: the detailed first principles model requires a CPU time that is prohibitive

for model based control purposes.

• SOLUTION

 A high efficiency numerical model in terms of CPU time is therefore required;

 Such a model should be able to describe the nonlinearities and the articulate

profiles of the network of reactors;

 Artificial Neural Networks, ANN, may be the answer.
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System identification

with ANN
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ANN architecture

Input variables Range

Inlet gas temperature, Tin [K] 423÷453

Inlet gas velocity, vin [m/s] 0.0189÷0.0231

Switch time, tc [s] 10÷50

Output variables

Mean methanol molar fraction, xCH3OH

Outlet gas temperature, TGAS [K]
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Levels
# of 

nodes

Activation 

function

1 Input 40 Sigmoid

2 Intermediate 1 15 Sigmoid

3 Intermediate 2 15 Sigmoid

4 Output 1 Linear

# of weights and 

biases
840 + 31 = 871

Learning factor, a 0.716

Momentum, b 0.366

Linear activation 

constant, m
0.275

ANN architecture
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Random input patterns
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Initialization of 
weights + biases

Forward

BackwardERMS

)(ni)(noi

?Ni 

Random selection

Load of the input 
patterns

( )    OR   ?av MAXn n N  

)(nav

)(nix

)(niy

n
NO YES

NO

)(niw

)(nib

LM equation

 

 
?

av
new
av

 

( )new n
av


ERMS

Levemberg Marquard learning algorithm

SECOND ORDER ALGORITHM

YES



© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano 39L3—

Algorithms comparison
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The overlearning problem
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Iterations
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ANN disturbance response

Time [s]

C
H

3
O

H
m

o
la

r 
fr

a
ct

io
n

0.041

0.040

0.039

0.038

0.037

0.036

0.035

0.034

0.033

0.032

Detailed model

ANN

3000 4000 5000 6000 7000 90002000

455
450
445
440
435
430
425
420
415

T
in

[K
]

8000

Disturbance on the inlet temperature 438  443  433  [K]



© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano 44L3—

Time [s]

C
H

3
O

H
m

o
la

r 
fr

a
ct

io
n

0.041

0.040

0.039

0.038

0.037

0.036

0.035

0.034

0.033

0.032

Detailed model
ANN

3000 4000 5000 6000 7000 90002000

50

40

30

20

10

t c
[s

]

8000

Disturbance on the switch time 30  45 [s]

ANN disturbance response



© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano 45L3—

Time [s]

C
H

3
O

H
m

o
la

r 
fr

a
ct

io
n

0.041

0.040

0.039

0.038

0.037

0.036

0.035

0.034

0.033

0.032

Detailed model

ANN

3000 4000 5000 6000 7000 90002000

0.023

0.022

0.021

0.020

0.019

V
in

 [
m

/s
]

8000

ANN disturbance response

Disturbance on the inlet velocity 0.021  0.0194  [m/s]



© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano 46L3—

ANN CPU times

MISO MIMO

ANN output variables CH3OH TG CH3OH+TGAS

# of output nodes 1 1 2

# of weights and biases 840+31=871 840+31=871 855+32=887

Jacobian matrix dimensions 4000 x 871 4000 x 871 8000 x 887

CPU time for evaluating JTJ [s] 17.38 17.37 49.13

Learning procedure CPU time 3h 14 min 3h 13 min 8 h 18 min

CPU time for a single ANN

simulation [s]
8.08E-6 8.23E-6 8.86E-6

ABOUT 6 ORDERS OF MAGNITUDE 

IMPROVEMENT BETWEEN THE FIRST 

PRINCIPLES MODEL AND THE ANN

ON-LINE FEASIBILITY OF 

MODEL BASED CONTROL


