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Hierarchical approach to process optimization
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About data reconciliation...

O Classical reconciliation of measures
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About data reconciliation...
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Q Gross error detection !
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About data reconciliation...

O Coaptation ?
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About data reconciliation...
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Introduction

 The Data Reconciliation methodology can be divided into three distinct phases

(Romagnoli e Sanchez, 2000):
— Classification of process variables and decomposition of the problem;

— Detection, identification and estimation of gross errors;

— Estimation of process variables not measured or not measurable.




Measurement classification

* Because of costs, convenience, and technical reasons, not all the process

variables are measured.

* By assuming that the process is working in steady-state conditions, some
unmeasured variables can be estimated using other measured variables and
calculations based on mass and energy balances.

* The estimation of not measured variables depends on the process layout and
on the in-the-field instrumentation.

* In general, the process instrumentation is incomplete (it does not measure all

the process variables).
The unmeasured variables can be divided into:

— Predictable variables (determinable)

— Unpredictable variables (undeterminable)
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Measurement classification

* Furthemore, measures can be classified into:
— redundant

— nonredundant

* A measure is redundant if it remains determinable when the observation is
removed.

* The classification of the variables is an essential tool to design and revamp
monitoring systems.

* Arobust classification of variables leads to significant savings linked to the
selection of instrumentation for field installation.

* Anincorrect classification of variables leads to the introduction of unnecessary
instrumentation involving higher investment costs.
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Measurement classification

 Anunmeasured variable is determinable if it can be calculated using the

available measures and balance equations.

 An unmeasured variable is indeterminable if it cannot be calculated using the

available measures and balance equations.

A measured process variable is redundant (overdetermined) if it can also be

calculated using the remaining measures and balance equations.

A measured process variable is nonredundant if it cannot be calculated using

the remaining measures and balance equations.
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Measurement classification

* Once the variables are classified, we have a significant amount of information

concerning the process topology.
* Itis now possible to solve the following problems:

— Select the set of measured variables which must be corrected (reconciled)
in order to increase the accuracy of the measured and unmeasured

process variables.

— Select the minimum number of measures so that Tools and Teehniques

all the unmeasured variables can be determined.
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Process model

- The process model is a mathematical formulation that describes its behaviour
under either STEADY STATE or DYNAMIC conditions.

- The process model is used at several levels:

- The process can be described by either linear or nonlinear models: ARX, NARX,

To infer unmeasurable parameters

To reconcile measures

To identify measures affected by gross errors

To determine the optimal control action
- Model based control (for example: Model Predictive control)
- Feedforward control

For process optimization

For process supervision

ARMAX, NARMAX, Laplace transforms, Regressions, Artificial neural networks
(ANN), deterministic and phenomenological models (First Principles), ...
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Process model

- The detail of the process model must be related to the requested description.
We can distinguish between:

- Stationary and dynamic model
« Linear or nonlinear model

-« Robust or efficient model

- Simplified or detailed model

« In the most complex situation the model is detailed, nonlinear and dynamic. We
must write, for the equipment and the streams of the process, the material,
energy, and momentum balances. The resulting system will contain differential
algebraic equations and possibly partial differential. There are suitable
numerical routines to integrate these systems.

Even the use of modern computers, with extremely fast CPUs, requires a good
amount of time for simulation (e.g., model predictive control, optimization),
which can be greater than the maximum acceptable time (horizon control). In
this case it is recommended to adopt/implement more simplified models to
reduce the CPU time (e.g., ARX or ANN models).
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Solution methodology

a

Equation oriented

This approach is based on material and energy balances applied to the
connections of the plant, used as equality constraints to be satisfied by finding
the minimum. The output variables of the procedure correspond to the input
ones. The difference between calculated and measured values is due to a
measurement error. To estimate the degrees of freedom of the plant, we must
have new and different measures as accurate as possible, distributed through
the process.

Black box

We have a process simulator that calculates the output variables to be
reconciled respect to the given input variables. The output variables are:
streams and/or compositions unknown and non measurable process
parameters. The simulation program is called iteratively by a non-linear
regression routine which determines the degrees of freedom in order to
minimize the distance between the measured and the calculated values.
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Redundancy

- Romagnoli and Sanchez (2000) define a system as being redundant when the
whole collection of data/information available exceeds the minimum required
amount for a univocal determination of the independent variables that describe

the selected model.

- Since the data are obtained from process measurements affected by probabilistic
fluctuations, redundant data are generally inconsistent thus every data subset

provides different results from other subsets.

- In order to obtain a consistent solution to the problem of determining the

measures, it is therefore necessary to introduce an additional criterion.
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Redundancy

Q Redundancy of the system

In case of Black Box approach we define the redundancy as the difference
between the number of measured variables and the number of degrees of
freedom:

Redundancy = # measured variables — # dof = NY — NPAR

The system describing numerically the reconciliation problem is
OVERDETERMINED. There are more equations than unknowns.

ryexper (1)_ yi-alc (X]_l X2"“’XNPAR): O
) yexper (2) - yfalc (X11 Xz;---, XNPAR) = O

\yexper(NY) o yclrl(c (X1, XZ"“’XNPAR) =0

The overdetermination of the system leads to the impossibility of completely
satisfying it. Conversely, it is possible to minimize the sum of squares of the
equations by solving a minimization problem with a non-linear regression in
the parameters, X.

© Davide Manca — Process Systems Engineering — Master Degree in ChemEng — Politecnico di Milano L7—17

N
/ kY
, Tolh
) VI |
. p&l;
D



Object function

A The reconciliation procedure has to minimize the following objective function:

0 [ Yy () = Y00 |

Minf =>

X i=1

By introducing the incidence matrix M,,

it is possible to check if a dof does

NOT affect any measure (column-wise)

or if a measure is NOT affected by any

dof (row-wise).

If two columns are linearly dependent
then there is a high functional dependency

between those degrees of freedom.

s° (i)

1
. @y?:'a'l'c """
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Solution of the reconciliation problem

- The Reconciliation problem can be solved if we have:
- Positive redundancy
- Independent degrees of freedom

- A robust numerical algorithm especially if we work online

o
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Solution of the reconciliation problem

« The basic assumptions are as follows:

1. The process model is able to properly represent the system under
consideration (model validation);

2. The measures are subject to an gerror that is normally distributed with
average equal to zero and variance o known (or that can be computed);

3. The measures come from a stationary process.

- The failure of Reconciliation (once hypothesis 1 is verified) is due to points 2 and 3.

There may be measures affected by gross error that have a non-zero averaged

error &
2
Fexp( ]dg;éo

- Possible causes of gross errors are: unreliable instruments, non-homogeneous

E(e) =Ij:g p(e)de =I+OO

conditions around the instrument, process instability, accidents, transcription
errors, communication failures, non-stationary conditions.

© Davide Manca — Process Systems Engineering — Master Degree in ChemEng — Politecnico di Milano

L7—20



Statistical analysis

To perform the Data Reconciliation procedure we must start from the averaged

measured values (measured in the field at a given time when the process is mildly
stationary).

At this regard, we have the expected value u(i) and variance oli) of the measure.
It is possible to distinguish between efficient and robust estimators:
«  ROBUST estimators

«  For u(i) we use the Median: it is the central value of the population in
ascending order. In the case of an even number of terms we do the
arithmetic mean of the two central values.

«  For o(i) we use the MAD (Median Absolute Deviation)
MAD(i) = 1.4826 * Median(|yeype(i,k)-Median(ye,,e(i,k) |)
EFFICIENT estimators

Arithmetic mean: y,(i) = Zyexper(l k) /NS \/

15 [ Vo (1K) =y, () |
Z NS -1

k=1

Standard deviation or mean square deviation: o(i) =
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Model identification

A Once we have defined NY = number of measures and NPAR = number of
degrees of freedom (parameters) it is possible to distinguish the following cases:

O NPAR > NY (NEGATIVE redundancy)

v

For instance: the proposed model y = ax? + bx + ¢ comprises three parameters
(NPAR = 3) whilst the experimental points are just two. There is an infinite
number of parabolas that match exactly the experimental data. It is not possible

to identify any Gross Errors.
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Model identification

O NPAR = NY (NO redundancy)

A

v

In this case, there is only one curve passing through the NY points. It is worth
observing that, in this case, the model is a straight line (y = ax + b ) depending

on two parameters.
We have: NPAR =2 and NY = 2. The redundancy is zero and it is NOT possible to

detect any Gross Errors.
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Model identification
O NPAR < NY (POSITIVE redundancy)

A o

T Gross error (outlier)

v

In this case, the proposed model is still a straight line (NPAR = 2) while the number
of experimental points is seven: NY = 7. There is NOT a model that simultaneously
satisfies all the experimental data. It is then necessary/advisable to minimize the
error by minimizing the distance between the model and the measured data.

We can also detect NGE potential gross errors: NGE = NY — NPAR = R = Redundancy

N.B.: if we identify a gross error it is possible to eliminate it or compensate it with
the value that has been just reconciled. In this case we do not decrease the

redundancy.
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Case-study

On-line data reconciliation
of an incineration plant
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Case study: incineration plant

Waste to energy plant with DeNOx catalytic section
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Case study: incineration plant

- Specifications required
 Evaluate the consistent value of the measurements from the field
- ldentify measurements affected by gross error

- Real-time knowledge of the characteristics of the incoming waste in terms of

elemental composition and heat of combustion
- Estimation of the inlet streams unmeasurable or not available:
« Air leakages
« Methane flowrate in the postcombustion chamber
- Evaluation of the operating parameters:
- Bag filter efficiency
- Catalyst efficiency

- Heat exchangers fouling factor

© Davide Manca — Process Systems Engineering — Master Degree in ChemEng — Politecnico di Milano L7—27




Case study: incineration plant

Q

Problem definition W

|:yexper (I) —Yi

calc

]

Objective function: Min f =>
X "
Measures to be reconciled: 24 -

T gas postcomb.

T out gas radiative zone
T out gas preheater

Gas out washing column
T gas stack

NOx entering DeNOx
HCl to the stack

Soot to the stack

CO out postcomb.

T out gas superheater
T air combustion

T out gas heater

T in gas DeNOx

NOx exiting DeNOx
SO2 to the stack

02 to the stack

T

Degrees of freedom (parameters of reconciliation): 23

Waste flow rate

S fraction in the waste
Kiln air leakage

Losses in the boiler

Corr. fact. economiz.

Acid wash efficiency

Corr. fact. exch. gas-gas
Catalyst efficiency DeNOx

Ash fraction in the waste

N fraction in the waste

Bypass gas fraction in the furnace
Corr. heat exch. coeff. rad. zone
Corr. fact. Preheater

Basic wash efficiency

Preheater air flow rate

Air leakages after postcombust.
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02 out postcomb.

out gas economizer

Gas entering washing column
Tout gas heat exchanger gas-gas
T out gas DeNOx

Ammonia flow rate

CO to the stack

Steam flowrate

Cl fraction in the waste

C fraction in the waste

Methane flow rate afterburner
Corr. heat exch. coeff. superheater
Bag filter efficiency

Corr. fact. Steam heater

Methane flow rate burner DeNOx
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Case study: incineration plant

« Problem solution
- We need a nonlinear regression routine to minimize the objective function.

- We must have a detailed model of the process that simulates the measurements
(i.e. calculates the reconciled values of the acquired measurements) whenever the
regression routine suggests a new vector of degrees of freedom.

- If the reconciliation procedure is NOT able to minimize the objective function to
the required precision it means that the material, energy, and momentum
balances describing the process “do not close”. In this case we can assume the
presence of a gross error and remove the measure respect to which there is the
larger deviation (or better replace the measured value with the estimated one).
The procedure continues until we reach the required accuracy. If the assumed
replaced measurement affected by gross error does NOT make the procedure
successful, we reintroduce the original removed measure and eliminate the next
one featuring the greatest deviation. In this case study the redundancy is equal to
one, consequently it is possible to identify just one gross error.
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Case study: incineration plant

The results...

Portata rifiuto 25M11/3815.1755 53973.44 ka‘h

EOO0.AD

Carico termico 25/11/9315.15.14  19.05 M

Potere calorifico  25411/9815.15.14 271204 kcal/kg

Rendimento termico  25/11/98 16.07.38 (.50

Fortata vapore 25411/3816.07.38 13.51 t/h
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Case study: incineration plant

O The results...

File Modfica Cemca ?

DEMO CYCOM Plus - PROCEDURA DI RICOHCILIAZIONE - RIEPILOGO

Funzione obiettivo. .. ..o iimiiceecnemnns 1298 .2640088
MAX BFFOFP .. i s ecccecaaccmemannmmnn 4 _989820E-82

Valori finali dei gradi di liberta’ attivati

Portata di vifiuto [kg/h].cceooaaaaaaaat 387 .524008
Fraz.massiva H20 nella corrente entrante...: 1.338146E-81
Fraz.massiva C1 nella corrente entrante....: 4 _B94G15E-84 —
Fraz.massiva 5 nella corrente entrante....: 1.582423E-84
Fraz.massiva H nella corrente entrante....: f.BOAF72E-AL4
Portata aria tenute forno [Kg/h].eeaeeaoann : 17869 .8800080
Frazione di by-pass fumi forno............. : 4.382227E-82
Dispersioni termiche caldaia [% duty]......: 2_.801692E-81

1.34945Y
1.866711

Fat. correttivo emissiv. gas zona radiante :
Fat. correttivo scambio termico surriscal. :

Fat. correttivo scambio termico economiz. : 5.813368E-81
Fat. correttivo scambio termico preriscal. : L_B6Z2194E-81
Efficienza termica colonna di lavag.basico : L. 0000860E- 61
Fat. corret. scambio termico risc. a vapore: 3.835258E-01
Fat. corret. scambio termico scam. gas-gas : 7.480029E-81
portata aria preriscaldatore : 15341 .8300088
portata CH4 bruciatore di supporto DEMOX...: 164789700
Efficienza catalizzatore DEMOX.............: 1.6851981

1| I
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Case study: incineration plant

O The results...

File Modfica Cerca #

COMPOSIZIONE DELLA STREAWM RICOMCILIATA: =]

3.431565E-01
3.99440F7E- 82
1.4085572E-01
7.860772E-04
1.582423E-84
4.8945615E-84
1.338146E-01
3.580929E-M1
J3168.386008

percentuale di C....... ... . oocoiaaaaaat
percentuale di H. ... ... ... .. .. ... .....=
percentuale di O..... ... .. o coioaaaaat
percentuale di M.... ... ... ..o ..o ..ot
percentuale di S.... ... cinimaiiimaeaaaanaal
percentuale di Cl.... ... ... .. o cocoooaaanat
percentuale di H20. ... ... ... .. ..o ...t
percentuale di inerti... .. ... ... ...........2
potere calorifico [kcalfkg].---ccooooooooooat

RIEPILOGO MISURE RICOMCILIATESDATI DI IHPUT:

misura val. sperim. val. calcol. errore % (1-188)
TIC1-1A 1837 .725808 1818.50080808 2 .66

Al1-2 3.167¥31 3.84548 3.92

AIC1-1 18.560437 1828697 2 .66

TI1-2 LB9 27860 489 _318608 -

TI1-3 315 .975088 31626158 -9

TI1-4 248_67998 244 81758 1.78

TIC1-7 213 .676808 214 63938 45

TI1-6 1853770808 18822988 2.82

FI1-14 47122 66008 47149 64008 .86

TI1-9 64 29519 62_79272 2.36

TIZ2-M 11575748 115 68448 -13

TI2-83 260._800008 258_48338 L. a7

TIZ2-88 293 .808380 30123778 2.58

AIZ2-81 2082 _84278 192 .96918 L._99

AlZ2-az2 18.083679 1885212 - a8

Al1-4 1.0080888 -99891 -11

AI1-% L .03523 L .B1237 b6

FIC1-11 18 .58559 18 49897 - Ay —
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From data reconciliation to on-line optimization

Optimization

Model

Reconciliation
Process

W
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Reconciliation and optimization

Reliable process data are the key to the efficient operation of chemical plants.

... it must be noted that errors in process data or inaccurate and unreliable
methods of resolving these errors, can easily exceed or mask actual changes in
process performance.

Romagnoli and Sanchez, 2000

- The incorrect knowledge of the operating conditions of the analyzed process

leads to an erroneous representation and scope for improvement of it.
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Reconciliation and optimization

* Think of a Ferrari that runs at 320 km/h:
— If the uncertainty in measuring the lap time is 1 millisecond then we have a
spatial uncertainty of 9 cm;
— If the uncertainty in measuring the lap time is 1 second then we have a

spatial uncertainty of 90 m.
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Reconciliation and optimization

2006 Monaco Grand Prix

# Nome
1 Michael
2 Kimi
3 Fernando
4 Mark
5 Giancarlo
6 Juan Pablo
7 Felipe
8 Jarno
9 Nico
10 Jenson
11 Nick
12 Rubens
13 Tiago
14 Scott
15 Ralf
16 Christijan
17 Vitantonio
18 Jacques
19 David
20 Christian
21 Takuma
22 Franck

Cognome
Schumacher
Raikkénen
Alonso
Webber
Fisichella
Montoya
Massa
Trulli
Rosberg
Button
Heidfeld
Barrichello
Monteiro
Speed
Schumacher
Albers
Liuzzi
Villeneuve
Coulthard
Klien

Sato
Montagny

Team

Ferrari
McLaren-Mercedes
Renault
Williams-Cosworth
Renault
McLaren-Mercedes
Ferrari

Toyota
Williams-Cosworth
Honda
Sauber-BMW
Honda
MF1-Toyota
STR-Cosworth
Toyota
MF1-Toyota
STR-Cosworth
Sauber-BMW

Red Bull Racing
Red Bull Racing
Super Aguri-Honda
Super Aguri-Honda

Migliori tempi sul giro

Tempo
01:15.1
01:15.3
01:15.7
01:15.7
01:15.9
01:16.0
01:16.6
01:17.2
01:17.2
01:17.3
01:17.3
01:17.3
01:17.3
01:17.5
01:17.5
01:17.6
01:17.7
01:17.8
01:17.8
01:17.9
01:18.8
01:19.1

Velocita media [km/h]
160.014
159.628
158.898
158.879
158.379
158.193
156.946
155.791
155.696
155.549
155.511
155.509
155.491
155.186
155.068
154.942
154.828
154.615
154.452
154.292
152.602
152.002

differenza %

0.241229
0.697439
0.709313
1.021786
1.138025
1.917332
2.639144
2.698514
2.790381
2.814129
2.815379
2.826628
3.017236
3.090980
3.169723
3.240966
3.374080
3.475946
3.575937
4.632095
5.007062

5%
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