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Definition of sustainability

A sustainable product or process:

• constraints resource consumption and waste generation to an acceptable level;

• makes a positive contribution to the satisfaction of human needs;

• provides enduring economic value to the business enterprise.
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Structure of the work
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Process modeling and simulation
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The cumene manufacturing process
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Reactions Kinetics

1) Cumene reaction

2) DIPB reaction

3) Transalkylation 

 3 6 6 6 9 12C H C H C H 

 3 6 9 12 12 18C H C H C H 

 12 18 6 6 9 122C H C H C H
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Pathak, A. S., Agarwal, S., Gera, V., & Kaistha, N. (2011). Design and control of a vapor-phase conventional process and reactive distillation process for cumene 
production. Industrial & Engineering Chemistry Research, 50(6), 3312-3326.
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Economic sustainability
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The feasibility assessment of chemical plants traditionally follows the economic guidelines suggested 

in the Conceptual Design of Chemical Processes by Douglas (1988).

Hierarchy of decisions

1. Batch vs. Continuous;

2. Input-Output Structure of the flowsheet;

3. Recycle structure of the flowsheet;

4. General structure of the separation system;

5. Heat exchanger networks.

Conceptual design
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Methodology

1. Selection of a suitable reference component, which must be:

• chosen according to the market field of the chemical plant;

• a key component for either the process or the sector where the plant operates.

For the O&G sector and petrochemical industry, a good candidate for the reference component is crude oil.

2. Definition of the sampling time and time horizon of the economic assessment;

3. Identification of an econometric model for the reference component;

4. Identification of an econometric model for the raw materials and (by)products;

5. Identification of an econometric model for the utilities;

6. Use of the identified econometric models to determine the economic impact of the designed 

plant in terms of Dynamic Economic Potentials (DEPs).

Predictive Conceptual Design (PCD)

9
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Time series analysis
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Use of moving-averaged values
Moving average allows eliminating most of the high-
frequency fluctuations and catching the price trend.

(Auto)correlation analysis
(Auto)correlograms report the (auto)correlation index of the 
time series X and Y based on the time lag between them.

Identification of the candidate econometric 
model

Evaluation of the adaptive parameters
It requires a linear regression procedure that minimizes the 
sum of square errors between real and model prices.
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Econometric models
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Environmental sustainability
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Environmental Sustainability
by Application of WAR Algorithm
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The Waste Reduction (WAR) algorithm is a tool to determine the potential environmental impact

(PEI) of a chemical process.

The Waste Reduction algorithm
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The Waste Reduction algorithm
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General impact category Impact category Measure of impact category

Human toxicity
Ingestion LD50

Inhalation/dermal OSHA PEL

Ecological toxicity
Aquatic toxicity Fathead minnow LC50

Terrestrial toxicity LD50

Global atmospheric impacts
Global warming potential GWP

Ozone depletion potential ODP

Regional atmospheric impacts
Acidification potential AP

Photochemical oxidation potential PCOP

Overall PEI for chemical k

Where:

• ψkl
s is the specific PEI of chemical k for 

the impact category l;
• αl is the weighing factor of the impact 

category l.

s

k l kl

l

 

Chemical Mass flow [kg/h] [PEI/kg] [PEI/h]

Benzene 22.537 0.837 18.863

Propylene 53.473 3.838 205.251

Propane 232.293 0.155 36.010

Cumene 12.682 1.196 15.164

DIPB 0.001 7.898 0.010

NO2 3.624 2.483 8.999

CO 1.594 0.305 0.486

CO2 2275.783 0.001 2.387

SO2 0.012 0.719 0.008

Methane 0.045 0.472 0.021

k ( )

,

tot
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Multi-objective optimization
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Multi-objective optimization

General formulation:

Objective functions:

Optimization algorithm: grid-search method.
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Pareto optimal solutions

These plots show the non-Pareto and Pareto optimal solutions for an arbitrarily chosen economic scenario. Each 

solution corresponds to a discrete point of the grid-search domain, i.e. a plant configuration.

As reactor length and inlet temperature increase, propylene conversion increases, thus the total rate of PEI output 

decreases. At the same time, capital and energy costs increase, and selectivity decreases.                                   
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Configuration Inlet temperature [°C] Reactor length [m] Cumulated DEP4k [MUSD] Cumulated PEI [MPEI]

Economic optimum 365 7 8.66 7.11

Environmental optimum 390 10 −0.99 3.42

Equidistant solution 385 5 5.13 4.77
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Pareto optimal solutions over 3000 scenarios
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Conclusions and future developments
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Conclusions

• The economic sustainability of the cumene plant is heavily conditioned by the fluctuations of commodity and 

utility prices.

• The WAR algorithm can be used in conjunction with PCD to achieve both environmental and economic 

sustainability.

• Whenever a modification is proposed to improve the environmental friendliness of a process, it is useful to 

question its economic viability under market uncertainty.

Future developments

• It will be worth considering new processes based on a higher number of design variables to make the 

optimization procedure more compliant with real plants.

• A further development could be expanding the boundaries of the study to include the upstream and 

downstream activities related to the main process.

• As far as the social attribute of sustainability is concerned, it will be worth developing practical ways to measure 

social sustainability for both single-site (e.g., process synthesis) and multi-site applications (i.e. SCM/EWO).
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Thank you for your attention


