

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE

DIPARTIMENTO DI CHIMICA, MATERIALI E INGEGNERIA CHIMICA «GIULIO NATTA»

LAUREA MAGISTRALE IN INGEGNERIA CHIMICA

POLITECNICO DI MILANO

Conceptual Design of Chemical Plants by Multi-Objective Optimization of Economic and Environmental Criteria

Relatore: Prof. Davide MANCA

Tesi di Piernico SEPIACCI matr. 837275

Anno Accademico 2015-2016

A sustainable product or process:

- constraints resource consumption and waste generation to an acceptable level;
- makes a positive contribution to the satisfaction of human needs;
- provides **enduring economic value** to the business enterprise.

A sustainable product or process:

- constraints resource consumption and waste generation to an acceptable level;
- makes a positive contribution to the satisfaction of human needs;
- provides **enduring economic value** to the business enterprise.

The cumene manufacturing process

Reactions		Kinetics	
1) Cumene reaction	$C_3H_6 + C_6H_6 \rightarrow C_9H_{12}$	$r_1 = 2.8 \cdot 10^7 \exp[-104, 181/(RT)]C_B C_P$	
2) DIPB reaction	$C_3H_6 + C_9H_{12} \to C_{12}H_{18}$	$r_2 = 2.32 \cdot 10^9 \exp\left[-146,774/(RT)\right] C_C C_P$	
3) Transalkylation	$C_{12}H_{18} + C_6H_6 \rightleftharpoons 2C_9H_{12}$	$r_{3,f} = 2.529 \cdot 10^8 \exp\left[-100,000 / (RT)\right] x_B x_D$ $r_{3,b} = 3.877 \cdot 10^9 \exp\left[-127,240 / (RT)\right] x_C^2$	

Pathak, A. S., Agarwal, S., Gera, V., & Kaistha, N. (2011). Design and control of a vapor-phase conventional process and reactive distillation process for cumene production. *Industrial & Engineering Chemistry Research*, 50(6), 3312-3326.

Piernico Sepiacci – Milan, 21 December 2016

Conceptual design

The feasibility assessment of chemical plants traditionally follows the economic guidelines suggested in the *Conceptual Design of Chemical Processes* by **Douglas** (1988).

Hierarchy of decisions

- 1. Batch vs. Continuous;
- Input-Output Structure of the flowsheet;
 EP2 = (Product Price) (Raw Materials Cost)
- 3. Recycle structure of the flowsheet; EP3 = EP2 - Reactor Cost (CAPEX + OPEX)
- 4. General structure of the separation system; EP4 = EP3 - Separation Cost (CAPEX + OPEX) $Cumulated EP4 = \sum_{t=1}^{nMonths} EP4_t = nMonths \cdot EP4$
- 5. Heat exchanger networks.

Raw materials

Cumene

Methodology

- 1. Selection of a suitable reference component, which must be:
 - chosen according to the market field of the chemical plant;
 - a key component for either the process or the sector where the plant operates.

For the **O&G sector** and **petrochemical industry**, a good candidate for the reference component is **crude oil**.

- 2. Definition of the sampling time and time horizon of the economic assessment;
- 3. Identification of an **econometric model** for the **reference component**;
- 4. Identification of an econometric model for the raw materials and (by)products;
- 5. Identification of an econometric model for the utilities;
- 6. Use of the identified econometric models to determine the economic impact of the designed plant in terms of **Dynamic Economic Potentials (DEPs)**.

Iime series analysis

Econometric models

Commodity	a_0	<i>a</i> ₁	b_1	\overline{R}^2	σ	\overline{X}
Crude oil	3.3207	1.8286	-	98.13%	0.0313	-0.0028
Benzene	2.6984	0.0754	0,9012	94.07%	0.0843	-0.0098

The Waste Reduction (WAR) algorithm is a tool to determine the potential environmental impact (PEI) of a chemical process.

Total rate of PEI output $\dot{I}_{out}^{(tot)} = \dot{I}_{out}^{(cp)} + \dot{I}_{out}^{(ep)}$

PEI output from the chemical process

$$\dot{I}_{out}^{(cp)} = \sum_{j}^{cp} \dot{M}_{j}^{(out)} \sum_{k} x_{kj} \psi_{k}$$

Where:

- $M_i^{(out)}$ is the output mass flow rate of stream *j*;
- x_{kj} is the mass fraction of chemical k in stream j.

PEI output from the energy generation

$$\dot{I}_{out}^{(ep)} = \sum_{j}^{ep-g} \dot{M}_{j}^{(out)} \sum_{k} x_{kj} \psi_{k}$$

Overall PEI for chemical k

 ψ_k ?

Overall PEI for chemical k

$$\psi_k = \sum_l \alpha_l \psi_{kl}^s$$

Where:

- ψ_{kl}^s is the specific PEI of chemical k for the impact category l;
- *α_l* is the weighing factor of the impact category *l*.

General impact category	Impact category	Measure of impact category
	Ingestion	LD ₅₀
Human toxicity	Inhalation/dermal	OSHA PEL
Foological Activity	Aquatic toxicity	Fathead minnow LC ₅₀
	Terrestrial toxicity	LD ₅₀
Clabel etwoenhoris imposts	Global warming potential	GWP
Global atmospheric impacts	Ozone depletion potential	ODP
Designed at we are having improved	Acidification potential	AP
Regional atmospheric impacts	Photochemical oxidation potential	РСОР

Chemical	Mass flow [kg/h]	${m arphi}_k$ [PEI/kg]	$\dot{I}_{out,k}^{(tot)}$ [PEI/h]
Benzene	22.537	0.837	18.863
Propylene	53.473	3.838	205.251
Propane	232.293	0.155	36.010
Cumene	12.682	1.196	15.164
DIPB	0.001	7.898	0.010
NO ₂	3.624	2.483	8.999
со	1.594	0.305	0.486
CO ₂	2275.783	0.001	2.387
SO ₂	0.012	0.719	0.008
Methane	0.045	0.472	0.021

General formulation:

$$\begin{array}{ll} Optimize & \mathbf{F}\left(\mathbf{x}\right) = \left[F_{1}\left(\mathbf{x}\right), F_{2}\left(\mathbf{x}\right), ..., F_{n}\left(\mathbf{x}\right)\right] \\ s.t. & h_{j}\left(\mathbf{x}\right) = 0 & j = 1, 2, ..., n_{e} \\ & g_{j}\left(\mathbf{x}\right) \leq 0 & j = 1, 2, ..., n_{i} \\ & \mathbf{x}_{l} < \mathbf{x} < \mathbf{x}_{u} \end{array}$$

Objective functions:

Cumulated DEP4_k =
$$\sum_{t=1}^{nMonths} DEP4_{t,k}$$
 $k = 1, ..., nScenarios$ To be maximizedCumulated PEI = $\dot{I}_{out}^{(tot)} \cdot nHpM \cdot nMonths$ To be minimized

Optimization algorithm: grid-search method.

Design variable	Lower bound	Upper bound	Step size	Steps number
Reactor length [m]	4	10	1	7
Inlet temperature [°C]	300	390	5	19

These plots show the non-Pareto and **Pareto optimal solutions** for an **arbitrarily chosen economic scenario**. Each solution corresponds to a discrete point of the grid-search domain, *i.e.* a plant configuration.

Configuration	Inlet temperature [°C]	Reactor length [m]	Cumulated DEP4 _k [MUSD]	Cumulated PEI [MPEI]
Economic optimum	365	7	8.66	7.11
Environmental optimum	390	10	-0.99	3.42
Equidistant solution	385	5	5.13	4.77

As **reactor length** and **inlet temperature increase**, propylene conversion increases, thus the total rate of PEI output decreases. At the same time, capital and energy costs increase, and selectivity decreases.

Pareto optimal solutions over 3000 scenarios

Conclusions

- The economic sustainability of the cumene plant is heavily conditioned by the fluctuations of commodity and utility prices.
- The WAR algorithm can be used in conjunction with PCD to achieve both environmental and economic sustainability.
- Whenever a modification is proposed to improve the environmental friendliness of a process, it is useful to question its economic viability under market uncertainty.

Future developments

- It will be worth considering new processes based on a higher number of design variables to make the optimization procedure more compliant with real plants.
- A further development could be **expanding the boundaries of the study** to include the upstream and downstream activities related to the main process.
- As far as the social attribute of sustainability is concerned, it will be worth developing practical ways to measure **social sustainability** for both **single-site** (*e.g.*, process synthesis) and **multi-site applications** (*i.e.* SCM/EWO).

Thank you for your attention