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ABSTRACT: The paper presents a methodology for the quantitative assessment of sustainability applied 
to the design of chemical plants. Specifically, we focus on the economic and environmental sustainability. 
The methodology implemented for the economic assessment is the predictive conceptual design (PCD) 
that uses as indicator the cumulated dynamic economic potential over a long-term horizon. PCD accounts 
for both CAPEX and OPEX terms, which on their turn depend on dynamic econometric models of 
commodities and utilities. The environmental assessment is based on the waste reduction algorithm and 
on the evaluation of the potential environmental impact. The benefit of PCD consists in accounting for 
market uncertainty and prices/costs volatility of OPEX terms. The optimal solutions of the economic and 
environmental assessment lay on the Pareto line produced by the multi-objective-optimization (MOO) 
problem. The MOO of a cumene plant allows discussing various optimal solutions in terms of economic 
and environmental concerns/criteria. 
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1 Introduction 

The chemical manufacturing industry is a multinational, varied scale sector that makes plenty of products 

available to promote social development and economic growth (Hall and Howe, 2010). Chemical industry is 

one of the four major energy-intensive industries, which include iron and steel, cement, and pulp and paper 

(Schönsleben et al., 2010). Past global events raised the awareness that substantial changes in energy and 

material utilization are recommended if not necessary for the sustainability of chemical industry. For 

instance, the increase in crude oil (CO) prices registered for several quarters till the third quarter of 2008 

drove the chemical industry to devise efficient technologies to reduce energy intensity and manufacturing 

costs (National Resource Council, 2005). In addition, carbon dioxide (CO2) emissions to the atmosphere 

received great attention. Grossmann (2004) reported that the level of CO2 in the atmosphere increased by 

a third since the beginning of the industrial age, and that CO2 contributes more than 70% to the potential 

for global warming. Process design methodologies play an important role in industrial sustainability. For 

instance, Marechal et al. (2005) included life cycle analysis, optimization, and other computer-aided 

systems among the recommended research and development (R&D) priorities. In this respect, there has 

been a renewed interest in Process Systems Engineering (PSE), which is devoted to the development of 

rigorous tools and techniques for the analysis of complex systems (Grossmann and Guillén-Gosálbez, 2010). 

The idea of sustainability took root in the international scientific community after the publication of the 

“Our Common Future” book by the World Commission on Environment and Development (WCED, 1987). 

WCED focused on the issues of environmental degradation and social inequity that result from the wasteful 

consumption of natural resources, and recognized that sustainable development “meets the needs of the 

present without compromising the ability of future generations to meet their own needs”. This definition 

allowed for various interpretations. To explain the implication of sustainability for chemical engineering, 

Sikdar (2003) identified four types of sustainable systems: (i) those referred to global concerns or problems, 

(ii) those characterized by geographical boundaries (e.g., cities, villages), (iii) businesses, either localized or 

distributed, and (iv) any particular technology that is designed to provide economic value through clean 

chemistry. Systems (iii) and (iv) reduce the region of influence to product/process design and 

manufacturing methods, which are more suitable for chemical engineering problems. In particular, a 

sustainable product or process can be defined as “the one that constraints resource consumption and waste 

generation to an acceptable level, makes a positive contribution to the satisfaction of human needs, and 

provides enduring economic value to the business enterprise” (Bakshi and Fiksel, 2003). Consequently, a 

certain engineering solution must agree with social requirements, and has to be economically feasible and 

environmentally friendly (García-Serna et al., 2007). Actually, social sustainability is often neglected due to 

the lack of rigorous methods capable of accounting for it, despite the recent attempts to integrate the 

social aspects into the decision-making process (Simões et al. (2014); Azapagic et al. (2016)). 

The combined use of sustainability assessment tools and optimization methods allows identifying those 

process alternatives that minimize the environmental impact while yielding good economic performance 

(Carvalho et al., 2008; Grossmann and Guillén-Gosálbez, 2010; Jensen et al., 2003). Several methodologies 

and indicators have been developed and applied to support environmental decisions (Burgess and Brennan 

(2001); García-Serna et al. (2007)). As far as the economic performance is concerned, most studies adopt 

the conventional approach to conceptual design (CD) based on the assumption of fixed prices of raw 

materials, (by)products, and utilities. This assumption is not representative of reality, since the price of 

commodities and utilities can vary significantly according to demand and offer fluctuations, and market 

uncertainty. As a result, price volatility has an intense influence on the economic sustainability of chemical 

plants. Aim of this paper is to propose an effective procedure to account for price/cost fluctuations in the 
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optimal design of chemical plants, and illustrate a comprehensive approach to reconcile the economic goal 

with the environmental concern. This paper considers as a case study the cumene process (Pathak et al., 

2011), which provides an interesting example of plantwide design optimization subject to some classical 

engineering trade-offs (Luyben, 2010). 

2 Methodology 

As shown in Figure 1, the modeling and optimization approach used in this paper goes through a sequence 

of steps. Once the process to be studied has been selected, the plant simulation is configured to assess 

both the economic and environmental impacts. Eventually, a multi-objective optimization (MOO) evaluates 

the trade-offs between the competing targets of economic and environmental sustainability. Outcome of 

this procedure is the identification of the optimal design configuration for equipment size and nominal 

operating conditions. 

 

Figure 1: Systematic approach to the optimal design of sustainable chemical plants. 

2.1 Economic sustainability 

The methodology for the assessment of economic sustainability lies on the evolution of conventional CD. 

Douglas (1988) proposed a hierarchical approach to the CD of industrial plants based on both operative 

expenditures (OPEX, i.e. the costs associated to running the plant) and capital expenditures (CAPEX, i.e. the 

cost associated to equipment purchase/setup). This hierarchical approach goes through a series of decision 

levels grounded on suitable economic potentials (EPs). Each EP (Douglas defined four EPs out of a sequence 

of five decision levels) progressively calls for a more in‐depth analysis of the CAPEX and OPEX terms in each 

section of the plant (i.e. input-output boundaries, recycles, reaction and separation sections, and 

heat-exchanger network). The plant is economically attractive if the EPs are positive. Douglas (1988) 

assumed that the prices/costs of commodities and utilities, which characterize the OPEX terms throughout 

the lifetime of the plant, are fixed (i.e. time invariant). This is a quite substantial limitation for the economic 

assessment (EA) of industrial plants, as market fluctuations play a primary role in making uncertain the 

future feasibility of the designed plant. Indeed, prices/costs of raw materials and products can oscillate and 

make the plant production either profitable or unprofitable as a function of their relative volatility. For 

instance, Manca et al. (2011) showed for the hydrodealkylation (HDA) process the continuously crossing 
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trends of benzene (i.e. the product) price and toluene (i.e. the raw material) cost over a long-term horizon 

(i.e. some years). Whenever the benzene price is lower than the toluene cost, the necessary condition for 

the economic sustainability of the process is not met, and the plant should not be operated (Milmo, 2004). 

Barzaghi et al. (2016) discussed the optimal design of a styrene monomer plant under market volatility, and 

showed that the hypothesis of fixed prices is unacceptable, as it would lead to continuously changing 

optimal configurations. In addition, they determined the existence of a CO quotation threshold beyond 

which the plant is not economically sustainable. This point is noteworthy, as in the past decade CO 

quotations have experienced very important oscillations with alternating bullish and bearish trends. Some 

considerations about physical and macroeconomic driving forces of CO volatility are reported in Manca et 

al. (2015), and Manca and Depetri (2016). 

Manca and coauthors (Manca and Grana (2010), Manca et al. (2011), Manca (2013), Barzaghi et al. (2016)) 

proposed two methodologies to carry out feasibility studies of chemical plants under market uncertainty, 

respectively christened Dynamic Conceptual Design (DCD) and Predictive Conceptual Design (PCD). Both 

procedures are based on the same hierarchical approach to EPs of Douglas, but they remove the hypothesis 

of fixed prices for the evaluation of the economic performance, and consider the uncertainties that 

inevitably affect future OPEX terms and profits. However, PCD differs from DCD, as DCD optimizes the 

design of a plant by considering the historical price time series, while PCD uses specific econometric models 

(EMs) to devise a set of possible future scenarios of the price/cost of both commodities and utilities, and 

find an optimal plant configuration for each scenario. For the sake of conciseness, this paper tackles only 

the PCD methodology for the assessment of the economic sustainability of chemical plants. 

The PCD procedure introduces a direct time dependency in the Eps formulation, and considers the variable 

profits and OPEX terms as a function of price fluctuations, which result in the definition of the Dynamic 

Economic Potentials (DEPs) (Manca et al., 2011). The CAPEX assessment for each process unit is performed 

by means of Guthrie’s formulas updated with the M&S cost index (Peters et al., 2003). Guthrie’s formulas 

estimate the purchase and installation costs of process units by considering some characteristic 

dimensions, materials, and operating pressures. The OPEX terms are computed by multiplying the 

inlet/outlet flowrates (obtained from steady-state mass and energy balances) times their corresponding 

prices/costs that fluctuate subject to market volatility. As far as price/cost fluctuations are concerned, 

Manca (2013) and Manca (2016) presented suitable EMs for both commodities and utilities that allow 

evaluating possible future economic scenarios over long-term horizons, and showed how Autoregressive 

Distributed Lag (ADL) models are suitable for PSE/CAPE applications. At once, it is useful to identify a 

functional dependency of commodity (e.g., distillates and derived petrochemical products) and utility (e.g., 

electric energy, fuel gas, steam) prices respect to the quotations of a reference component that plays a key 

role on their quotations in the specific market where the plant is operated. CO and natural gas (NG) are 

good candidates for the role of reference component, as they (i) are precursors of a number of 

(petro)chemical components, (ii) are involved as fuels in power generation plants (with different 

proportions in the energy mix depending on the concerned country), and (iii) their cost is well-known and 

largely available. Figure 2 summarizes the methodology used to identify the EMs, which are implemented 

in Section 3.2. 
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Figure 2: Methodology used to identify the EMs. 

For design and sustainability assessment purposes, the typical time horizon is the expected lifetime of the 

plant or at least a substantial fraction of it (i.e. some years). This latter option is a compromise between a 

sufficient time horizon for forecast purposes and the reliability of the adopted EMs. Instead, the choice of a 

suitable sampling time depends mainly on the availability of real prices linked to the involved financial 

market and the complexity/detail of the numerical simulation. Manca et al. (2011) showed a systematic 

approach to finalize the EMs of raw materials, (by)products, and utilities that contribute to evaluate and 

forecast the OPEX terms. The fourth-level DEP calculated for the 𝑘-th economic scenario has the following 
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where NP  and NR  are the number of products and reactants, respectively; C stands for the prices/costs; 

pF  and rF   are the flowrates of products and reactants, respectively; N  measures the length of the 

horizon in months used for the EA; 𝑛𝐻𝑝𝑌 is the number of production hours in a year; i  and k  are the 

subscripts for a specific month and scenario, respectively. 

  4Cumulated DEP  is the objective function for the economic sustainability in the PCD method. It is 

defined as the sum of monthly values of 4DEP  throughout the operational life span of the plant, for the 

k -th economic scenario: 

  ,

1

  4   4          1, ,
N

i kk
i

Cumulated DEP DEP k K


    (2) 

For the sake of clarity, each 𝑘-th scenario describes a possible economic trajectory of prices/costs for the 

assessment of both revenues and OPEX terms. This means that PCD adopts a probabilistic approach to the 

EA of chemical plants, from which valuable information on the distribution of expected optimal values can 

be extracted. 

The intrinsic fluctuations of future price scenarios bring about a probabilistic distribution of the 

  4Cumulated DEP , which represents the economic impact of the designed plant. Negative values of 

  4Cumulated DEP  mean economic losses in case of plant operation under specific economic scenarios, 

while positive values foreshadow plant economic sustainability. The optimal design problem searches for 

the plant configuration that maximizes the   4Cumulated DEP  subject to either a specific scenario or a set 

of scenarios (in this case the assessment becomes probabilistic). The best   4Cumulated DEP  amongst the 

different plant configurations outlines the optimal plant configuration (i.e. the optimal set of degrees of 

freedom). For the sake of brevity, we will provide results that are based only on one specific economic 

scenario, which is representative of the recent historical price/cost trends. Hence, this article does not 

discuss the results obtained by the probabilistic distribution of future scenarios. 

2.2 Environmental sustainability 

A number of methodologies are available in the literature for the characterization of the environmental 

impact of chemical products and processes (Burgess and Brennan (2001); García-Serna et al. (2007)). The 

recommended approach to the design of environmentally benign processes is to identify potential pollution 

problems early in the development stages rather than use end-of-pipe treatments (Douglas, 1992). For 

instance, Life Cycle Assessment (LCA) and the Waste Reduction (WAR) algorithm are well-established 

techniques to include environmental considerations into process design or retrofitting. LCA is supposed to 

assess the environmental performance of a product or process from the cradle of primary resources to the 

grave of recycling or safe disposal (Clift, 2006). The main drawback of LCA is the large amount of 

information required over the life cycle, and the lack of public data due to legal or intellectual property 

concerns (Jiménez-González et al., 2000). At the early design stage, extensive data related to process 

alternatives are not available, and the focus is more on excluding the worst alternatives instead of finding 

the best one (Diwekar and Shastri, 2011). In this respect, a data-intensive approach is not helpful, whereas 

the estimation of gate-to-gate information becomes feasible. The WAR algorithm considers only the 
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manufacturing step of the overall life cycle of a product, thus neglects raw material(s) acquisition and 

product(s) distribution, use, disposal, and recycle (Young et al., 2000). However, it is a simple tool to be 

used by design engineers to evaluate the environmental friendliness of a process (Young and Cabezas, 

1999). 

The WAR algorithm has been used to describe the environmental performance of unit operations (Chen 

and Feng (2005); Ramzan et al. (2008)), optimize chemical manufacture and recovery (Kim and Smith 

(2004); Shadiya et al. (2012)), design eco-efficient biodiesel processes (Couto et al. (2011); Marulanda 

(2012); Othman et al. (2010)), and model industrial utility systems (Idris et al., 2016). We chose to apply the 

WAR algorithm to evaluate the environmental impact of both the cumene production and the energy 

consumed within the process (see also Section 3.3). Figure 3 shows a summary of the theoretical 

background adopted in this article. 

 

Figure 3: Applicability of the WAR algorithm to the product life cycle (adapted from Young and Cabezas (1999)). 

2.2.1 Impact balance and indicators 

The WAR algorithm determines the potential environmental impact (PEI) of a chemical process. The PEI of a 

given amount of material or energy can be defined as the effect that such an amount would have once 

emitted into the environment (Young and Cabezas, 1999). This implies that the PEI of a particular emission 

is probabilistic in nature, and an average estimate of the effect that this emission is likely to have (Young et 

al., 2000). Cabezas et al. (1999) proposed to consider a balance equation describing the PEI of a 

manufacturing process to incorporate environmental aspects into the process design. Young and Cabezas 

(1999) improved that balance by including the energy generation process (Figure 4). For steady state 

processes, the PEI balance equation is: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) 0cp ep cp ep cp ep syst

in in out out we we genI I I I I I I        (3) 

where ( )cp

inI  and ( )cp

outI  are the input and output PEI to the chemical process, ( )ep

inI  and ( )ep

outI  are the input 

and output PEI to the energy generation process, ( )cp

weI  and ( )ep

weI  are the output PEI associated with waste 
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energy lost by chemical and energy generation processes, and 
( )syst

genI  is the rate of PEI generation by the 

system. As observed by Young and Cabezas (1999), chemical plants do not emit large amounts of waste 

energy generally, and the PEI associated with energy emission is usually negligible compared to the PEI 

associated with the mass emission (e.g., toxic substances, pollutants, solid/liquid/gas wastes). Therefore, 

Equation (3) can be simplified to: 
( ) ( ) ( ) ( ) ( ) 0cp ep cp ep syst

in in out out genI I I I I      (4) 

 

Figure 4: Boundary of PEI balance expression. Adapted from Young et al. (2000). 

There are two classes of PEI indicators that can be derived from Equation (4): (i) the one associated with 

output, and (ii) the one associated with generation. As far as output indicators are concerned, this study 

uses the total rate of PEI output ( ( )tot

outI ): 

( ) ( ) ( )tot cp ep

out out outI I I 
 (5) 

With regard to PEI generation, 
( )syst

genI  may be a useful indicator of the internal environmental efficiency of a 

process (Young and Cabezas, 1999). In particular, it gives emphasis to the contribution of raw materials to 

the total PEI. For instance, output indicators do not capture the impact of switching from a non-renewable 

feedstock to a biomass derivative (Seay and Eden, 2009). However, we can anticipate that this is not the 

case of cumene manufacture, which is a well-established process based on benzene and propylene as raw 

materials (Degnan Jr et al., 2001). This consideration does not apply to energy generation as far as 

renewables are concerned. For now, being NG a major contributor to electric energy (EE) and steam 

generation, the relative importance of ( )cp

inI  and ( )ep

inI  will not be considered. 
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2.3 Multi-objective optimization 

Once the indicators of economic and environmental sustainability are defined, it is possible to formulate 

the MOO problem. As reported by Azapagic (1999), the general MOO problem of a system takes on the 

following formulation: 

1 2( ) ...

. . ( )

( )

p

n

q

Min   f  f   f

s t

             
R

Z

   





 

 

f x,y

h x,y 0

g x,y 0

x X

y Y

 (6) 

Where f  is a vector of economic and environmental objective functions to be simultaneously optimized, 

( ) h x,y 0  and ( ) g x,y 0  are equality and inequality constraints, and x,y  are the vectors of 

continuous and integer variables, which stand for material and energy flows, pressures, compositions, 

(discrete) sizes of process units, materials, and equipment. As discussed in Rangaiah and Bonilla-Petriciolet 

(2013), MOO problems do not feature a single solution that simultaneously optimizes conflicting objectives. 

Conversely, one is interested in determining the set of x  values that yield the best compromise solutions. 

These values are known as Pareto-optimal solutions, as the improvement of any one of the objectives is not 

possible without worsening at least one of other objectives. The MOO algorithm used in this paper is 

intentionally chosen amongst the brute-force methods, i.e. the grid-search method. This method can 

perform a robust and exhaustive evaluation of the objective function in the discretized domain of 

investigation provided that the number of degrees of freedom is reasonably low. The grid-search method, 

besides being exhaustive, can identify the absolute optima and allows drawing the hypersurfaces of the 

objective functions together with their contour lines. This allows gathering the optimality trends and the 

unique features of the MOO problem. 

Another positive advantage of the grid-search method consists in the improved convergence of the process 

simulator that can rely on initial-condition values for a new simulation, which are inherited from the 

previous (i.e. adjacent) convergence point of the discretized grid. The results of plant simulations are k  

Pareto lines for each of the k  price scenarios. The Pareto lines are only a two-dimensional projection of an 

n-dimensional hypersurface as in case of bi-objective optimization, which is the one involved in the 

assessment of economic and environmental sustainability. As none of the objective functions on the Pareto 

hypersurface can be improved without worsening the value of at least another objective function, some 

trade-offs among the objective functions are necessary in order to identify the preferred optimal solution 

based on a suitable decision criterion. 

3 Case study 

Cumene is one of the largest commodity derivatives of benzene, with an estimated production volume of 

11.4 millions of tons in 2010. According to IEA (2013) this figure is expected to grow steadily in the next 

decades. Essentially, the whole cumene production is consumed for the synthesis of phenol and acetone. 

Eventually, phenol is used to produce both phenolic resins (to make furniture and construction boards) and 

polycarbonates, which have wide industrial applications (Shell, 2011). The synthesis of cumene involves (i) 

the reaction of benzene with propylene to form cumene, and (ii) the undesired reaction of cumene with 

propylene to form p-diisopropylbenzene (p-DIPB). Actually, the chemistry is more complicated due to the 
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formation of small amounts of heavier p-isopropylbenzenes (p-IPBs). However, for the sake of simplicity, 

this study accounts only for p-DIPB. A number of authors used the cumene process to illustrate plant-wide 

economic optimization (Luyben (2010); Gera et al. (2013); Norouzi and Fatemi (2012)), but few included 

environmental considerations (Sharma et al., 2013). At the best of our knowledge, nobody discussed the 

role played by market uncertainty on the size and operating conditions of plant equipment. Most studies 

drew inspiration from the basic flowsheet of Turton et al. (2008), where the byproduct is removed and used 

as fuel. However, conventional cumene plants convert p-DIPB back to cumene in a transalkylation reactor 

to reduce the loss of valuable product (Zhai et al., 2015). For this reason, we consider the process flow 

diagram of Pathak et al. (2011) that features the transalkylator of Figure 5. Pathak and coauthors provided 

a detailed description of the plant, thus this article recalls just the main aspects. For the sake of clarity, we 

chose to optimize a cumene production plant located in the USA. 

 

 Figure 5: Cumene process flow diagram (adapted from Pathak et al. (2011)). 

3.1 Process description 

Table 1 reports the involved reactions and the corresponding kinetic schemes for the cumene synthesis. 

Selectivity is favored at low temperature, as the activation energy of the undesired reaction is higher than 

that of the synthesis reaction. In addition, selectivity improves by keeping the concentration of cumene and 

propylene low in the reactor, which requires a large excess of benzene that must be recycled. 
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Table 1: Chemical reactions and kinetic scheme of the cumene process (Pathak et al., 2011). BC : benzene 

concentration. PC : propylene concentration. CC : cumene concentration. Bx : benzene molar fraction. Dx : p-DIPB 

molar fraction. Cx : cumene molar fraction. R : 8.316 kJ/(kmol∙K). Concentrations are in kmol/m3. Reaction rates are 

in kmol/(m3∙s). For transalkylation, both forward ( 3, fr ) and reverse ( 3,rr ) reaction rates are reported. 

Reaction Kinetics 

1 Cumene reaction 3 6 6 6 9 12C H C H C H    7

1 2.8 10 exp 104,181/ ( ) B Pr RT C C    

2 p-DIPB reaction 3 6 9 12 12 18C H C H C H    9

2 2.32 10 exp 146,774 / ( ) C Pr RT C C    

3 Transalkylation 12 18 6 6 9 122C H C H C H  
 8

3, 2.529 10 exp 100,000 / ( )f B Dr RT x x    

 9 2

3, 3.877 10 exp 127,240 / ( )r Cr RT x    

The plant designed by Pathak et al. (2011) has a nominal capacity of 95,094 t/y. The reactions occur in 

vapor phase in presence of a solid catalyst (assumed to have a solid density of 2000 kg/m3 and a void 

fraction of 0.5). Fresh benzene and fresh propylene enter the process as liquids at a rate of 98.96 kmol/h 

and 105.3 kmol/h, respectively. Fresh propylene contains 5% propane impurity, which is inert and has to be 

removed from the process. Since the separation of propylene and propane is difficult (Luyben, 2010), 

process economics favors high propylene conversion, which can be achieved by either increasing the 

reactor volume or operating at high temperature. The latter alternative increases the production of 

undesired byproducts, revealing the critical conflict between conversion (favored at high temperature) and 

selectivity (favored at low temperature). 

As shown in Figure 5, fresh reactants are mixed with the benzene recycle, vaporized in E1, and preheated in 

two heat exchangers. The feed effluent heat exchanger recovers heat from the hot reactor outlet stream, 

while E2 heats the reactor inlet stream to the reaction temperature. The packed bed reactor recovers 

additional energy by generating high-pressure steam from the exothermic reactions. For the sake of 

completeness, Sharma et al. (2013) proposed an alternative heat integration system. However, the heat 

exchanger network synthesis is out of the scope of this paper. 

The cooled reactor effluent is sent to a sequence of three distillation columns where the lightest 

component is separated first, according to the heuristics of Douglas (1988). Column T1 separates inert 

propane and any unreacted propylene (with a little benzene) as vapor distillate. The bottom from T1 is sent 

to column T2 that separates the unreacted benzene to be recycled. Finally, column T3 separates nearly 

pure cumene as distillate and p-DIPB as bottom. The p-DIPB stream is mixed with a fraction of the benzene 

recycle, heated, and fed to the transalkylator, whose effluent is sent to column T2 to recover benzene and 

cumene. Pathak et al. (2011) recommend adopting a heuristic approach to design the transalkylator, whose 

economic impact is limited as the inlet stream is relatively low (9.73 kmol/h in the base case). Pathak and 

coauthors set the inlet temperature at 240 °C (to avoid cumene dealkylation), the benzene to p-DIPB ratio 

at 2 (which provides good equilibrium conversion while controlling the benzene recycle), and the 

single-pass conversion at 75% (which is low enough to avoid an excessive increase of the reactor size). 

Thus, the smallest possible transalkylator has 100 packed tubes and is 1.6 m long. 

The optimal design of the cumene plant offers some opportunities to reduce both the expenses and the 

environmental impact by (i) improving the performance and the selectivity, (ii) decreasing the formation of 

byproducts, and (iii) reducing the loss of raw materials and final products. According to Pathak et al. (2011), 

the most important design variables are the reactor inlet temperature, the reactor volume, the reactor 

pressure, and the benzene recycle fraction. The reactor inlet temperature affects both conversion and 

selectivity. In fact, higher temperatures increase the reaction rates and consequently the conversion. At the 

same time, higher temperatures decrease the selectivity, as the activation energy of the undesired reaction 

is higher than that of the synthesis reaction. In addition, higher temperatures result in greater energy costs. 
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The reactor volume has a relevant impact on the performance of the system. As the reactor volume 

increases, conversion improves, but a larger reactor is more expensive in terms of both vessel and catalyst 

cost. However, an increase in the reactor volume involves a decrease in the reactor inlet temperature and 

improves the selectivity. As far as the reactor pressure is concerned, it is worth operating at the maximum 

allowable pressure as the synthesis reaction occurs with a decrease in the number of moles. For this 

reason, the reactor pressure is fixed at 25 bar (Pathak et al. (2011)) and not optimized. 

The recycle of benzene affects a number of important variables. For instance, when the recycle of benzene 

increases, the production of p-DIPB decreases, but the costs increase due to a larger recycle column. In 

summary, it is possible to reduce the synthesis of undesired byproducts by either decreasing the reactor 

inlet temperature or increasing the benzene recycle. For the sake of simplicity and robust flowsheet 

convergence, this study adopts as degrees of freedom of the MOO problem just the reactor inlet 

temperature and the reactor volume. This number of design variables is low if compared to other 

optimization problems in the literature (Gera et al. (2013); Norouzi and Fatemi (2012); Sharma et al. 

(2013)). However, this concern is not much relevant, as aim of this paper is not to carry out a sophisticated 

optimization, but rather illustrate an approach to the design of chemical plants for economic and 

environmental sustainability. 

3.2 Economic sustainability 

As anticipated in Section 3.1, the optimal plant configuration depends on two degrees of freedom: (i) 

reactor inlet temperature, and (ii) reactor volume. More specifically, being the number of tubes in the 

reactor fixed at 1500 (Pathak et al., 2011), the independent variable for reactor volume is assumed to be 

the tubes length. The upper and lower bounds for both the degrees of freedom are close to the ones 

proposed by Pathak et al. (2011), where the reactor inlet temperature does not exceed 390 °C to avoid 

hot-spot problems. Indeed, the reactor inlet temperature varies between 300 and 390 °C, and the reactor 

length between 4 and 10 m. The cumene plant is simulated at the steady-state condition with UniSim 

Design R430 (Honeywell, 2015), using the Peng-Robinson equation of state for the thermodynamic 

properties. 

3.2.1 Conventional approach to the economic assessment of chemical 

plants 

This Section discusses the conventional approach to the EA of chemical plants proposed in Douglas (1988). 

The utilities used in the cumene plant are the EE for pumps, the high-pressure steam in reboilers and 

heaters, and the cooling water in condensers and coolers. The conventional CD applied to the cumene plant 

presented by Pathak et al. (2011) entails the quantification of the fourth-level EP ( 4EP ), defined as the 

difference between the revenues from selling the product and the CAPEX and OPEX terms associated with 

raw materials, reactors, separation system, and heat exchangers (Douglas (1988)). If the chosen time 

horizon is five years (Manca et al. (2011)), it is possible to address the sum of the 4EP  over a 

corresponding period of sixty months: 
60

1

  4   4 60 4t

t

Cumulated EP EP EP


    (7) 

with 4EP  in USD/mo and   4Cumulated EP  in USD. 
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Figure 6: Comparison of monthly prices/costs of cumene and reactants from January 2004 to October 2013. 
Reactants cost was obtained by addition on mole basis. Equation (7) points to the last sixty months of the ten-year 
interval. It is worth pointing out that the historical quotations were considered only up to October 2013 due to the 
availability of information from databanks (e.g., EIA (2016b), ICIS (2016)) 

The CD approach of Douglas (1988) has a significant limitation that is epitomized by Equation (7). In fact, 

4EP  (see also Section 2.1 for further details) is supposed to be constant at every sampling time of the 

assessment period. Conversely, different values of 4EP  can be calculated from each set of monthly 

quotations over the chosen time horizon. In fact, Figure 6 shows the volatility of cumene and reactants 

prices/costs in the 2004-2013 decade, which determines significant fluctuations of   4Cumulated EP  as 

summarized in Figure 7. Therefore, the conventional approach to EA is not representative of the economic 

sustainability of the cumene plant, because it suggests highly oscillating revenues (both positive and 

negative) that change according to the monthly prices/costs of both commodities and utilities. 

 

Figure 7: The EA based on the CD approach (i.e. fixed prices at a user-assigned specific time) would forecast either 

positive or negative EPs. The diagram displays the variable values of the   4Cumulated EP  as a function of the sixty 

monthly quotations from October 2008 to October 2013. The green area shows the profitable economic region; the 
red area shows the unprofitable one. 
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3.2.2 Economic assessment based on the PCD methodology 

The EA according to PCD follows the steps shown in Figure 1 and Figure 2. CO is the precursor of each 

commodity involved in the cumene process, so it is chosen as the reference component. As already pointed 

out, we decided to optimize a cumene plant located in the USA, over an assessment period of five years 

(from October 2013 to October 2018) with monthly sampling as time granularity. 

 

Figure 8: Comparison between historical WTI prices (green continuous line) and moving averaged prices (red dashed 
line) from April 2004 to January 2016 (monthly data from (EIA, 2016b)). The moving average is calculated over four 
quotations. 

Figure 8 shows the historical time series of WTI prices (typical of the USA market instead of Brent 

quotations for the European market) and the comparison with the moving average prices. The usefulness of 

the moving-average operator is discussed in Barzaghi et al. (2016), and the EMs proposed here work with 

moving averaged quotations. 
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Figure 9: Autocorrelograms of CO quotations (a) and cumene prices (b), and correlograms of EE and NG prices (c), and 
cumene and benzene prices (d). 

By analyzing the autocorrelogram shown in Figure 9a, one can deduce that the CO quotation at the i th  
month depends mostly on two previous quotations. Therefore, the proposed EM of CO becomes (Manca, 

2013): 

, , 1 , 2( ) (1 )CO i CO i CO i CO COP A B P C P rand P           (8) 

Where ,CO iP  is the i th  monthly quotation of WTI, 
CO  and COP  are the standard deviation and mean 

values of WTI price series, rand  is a stochastic function normally distributed, and A , B , and C  are 

adaptive parameters that are calculated by a linear regression procedure that minimizes the mean square 

error between the real quotations and the model ones (Table 3). 

 

Figure 10: Chart of fifty possible CO future-price scenarios (cyan lines) over a five-year horizon from October 2013 to 
October 2018. The black continuous line shows the real CO prices up to November 2015 (EIA, 2016b). The red dashed 
line is the arbitrarily chosen scenario for the EA of the MOO problem. 

Once identified, Equation (8) is used with a step-by-step approach to evaluate a distribution of future price 

scenarios (i.e. price trajectories), and obtain a probabilistic distribution of econometric scenarios (Figure 

10). 

For the sake of simplicity, the PCD procedure was carried out for just one arbitrarily chosen forecast 

scenario, i.e. the red dashed line of Figure 10 whose initial time is October 2013. This scenario is capable of 
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well forecasting the real WTI quotations from October 2013 to July 2015, while it departs from the real CO 

trend in the second half of 2015. Nonetheless, it can account for major oscillations. It is worth observing 

that the arbitrarily chosen scenario does not reproduce well the real quotations from July 2015 to January 

2016 (i.e. the last real WTI quotation of this paper). This is primarily due to the abnormal events that 

affected the global economy (e.g., Chinese crisis of stock exchanges, withdrawal of Iranian embargo, the 

USA overproduction of shale-oil, Saudi Arabia ruinous self-declared-leading position within OPEC, the Saudi 

Arabia vs Iran arm wrestling for oil quotas). In this regard, an economic approach to CO price modeling 

would be more flexible (Manca and Depetri, 2016), although more laborious and out of the scope of this 

article. 

As far as the commodity EMs are concerned, we devised some tailored models for toluene, benzene, 

propylene, and cumene prices from a dedicated (auto)correlograms analysis as reported in Manca (2013). 

Indeed, Figure 9b and Figure 9d show the (auto)correlograms that were used to formulate the EM structure 

of cumene. Even though toluene is not directly involved in cumene manufacture, it is the precursor of 

benzene, and their prices are correlated. Table 2 lists the ADL models for the components of the cumene 

process, while Table 3 reports their adaptive coefficients. 

Table 2 - ADL EMs for toluene, benzene, refinery grade propylene, and cumene prices. 

Component Model 

Toluene , , , 1 , 1T i CO i CO i T iP A B P C P D P         

Benzene , , , 1 , 1B i T i T i B iP A B P C P D P         

Propylene (Refinery Grade) , , , 1 , 2P i CO i P i P iP A B P C P D P         

Cumene , , , 1 , 2C i B i C i C iP A B P C P D P         

The cumene process calls for the EA of a further (indirect) component, i.e. NG as it does not participate 

directly to the cumene synthesis but allows estimating the costs of most of the involved utilities, i.e. EE and 

steam (see also Table 4). 

 

Figure 11: Comparison between EE prices and NG prices in the USA market from July 2001 to December 2011. 
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Indeed, Figure 11 highlights a significant dependency of the American EE prices from NG fluctuations. 

According to the correlogram analysis, NG quotations are correlated to the reference component with a 

time-delay of 8 months: 

, , 1 , 8( ) (1 )NG i NG i CO i NG NGP A B P C P rand P           (9) 

Table 3 – Adaptive parameters of ADL EMs of CO, NG, toluene, benzene, refinery grade propylene, and cumene 
prices. 

Raw material 𝑨 𝑩 𝑪 𝑫 𝑹𝟐 

Crude oil 3.128 0.966 - - 0.951 

Natural gas 0.914 1.091 0.0002 - 0.937 

Toluene 1.331 0.767 -0.733 0.951 0.976 

Benzene -0.518 0.791 -0.726 0.943 0.969 

Propylene (Refinery Grade) 2.737 0.084 1.588 -0.794 0.98 

Cumene 10.993 0.487 1.287 -0.667 0.974 

Respect to the rather complex modeling approach of Manca (2016) that was aimed at short-term horizon 

applications such as scheduling and planning, this paper focuses on a simpler ADL-derived approach based 

on the (auto)correlograms analysis and econometric dependency of EE from NG (Figure 9c) for long-term 

horizon applications such as PCD. Similar to EE, the steam price is assumed proportional to the NG 

quotations. 

Table 4 - EMs for EE and steam prices. 

Utility Model 

Electric energy , , 1 , 1EE i NG i EE iP A B P C P       

Steam , ,STEAM i NG iP A P   

Table 5 - Adaptive parameters of EMs of EE and steam prices. 

Utility 𝑨 𝑩 𝑪 𝑹𝟐 

Electric energy 2.98 1.316 0.81 0.927 

Steam 0.003 - - - 

The multiplicative coefficient of steam model (Table 5) is obtained by assuming a fuel heat content of 

1,029,000 Btu/Mcf (EIA, 2016a). In addition, the production of 1 klb/h of high-pressure steam (70 bar) 

requires a power of 1.2 MBtu/h that is provided by a proportional amount of NG fed to the boiler with 85% 

efficiency, which corresponds to 0.003 MBtuNG/kgSteam (DOE, 2016). In order to finalize the OPEX 

assessment, the cooling water cost and low-quality steam credits are those reported by Pathak et al. 

(2011), despite their negligible orders of magnitude respect to the other terms of the economic potential. 

Once the EMs are identified, it is viable to run the grid-search optimization to find the optimal set of 

degrees of freedom that maximize Equation (2) for the specific WTI scenario (sixty months) of Figure 10 

(red dashed line). For the sake of clarity, the nominal capacity of 95,094 t/y (Pathak et al., 2011) is not kept 

constant during the optimization procedure, while the amounts of fresh benzene and propylene are fixed. 

Regarding the grid discretization, we chose a compromise between level of detail and computation load by 

assigning as discretization intervals 5 °C for inlet temperature, and 1 m for the tubes length. Consequently, 

the overall number of simulations over the discretized grid is 133. Since a few simulations at the boundaries 
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of the discretization domain were not successful (27%), only 97 simulations (based on the configurations of 

degrees of freedom) converged. 

Figure 12 shows the contours of the   4Cumulated DEP  surface as a function of the degrees of freedom. At 

the optimal solution, the inlet temperature is 365 °C and the reactor length is 7 m, while the 

  4Cumulated DEP  is 10.15E6 USD. It is worth underling that the arbitrarily chosen WTI scenario (and all its 

derived EMs for both commodities and utilities) leads to five economically unsustainable solutions. For the 

sake of clarity, five grid points, with their corresponding coordinates, i.e. the degrees of freedom of the 

problem, are characterized by a negative   4Cumulated DEP . 

 

Figure 12: Contours of the Cumulated DEP4 [USD] function with respect to inlet temperature and reactor length. The 
red point shows the optimal set of degrees of freedom for the EA based on the PCD method. 

3.3 Environmental sustainability 

According to the notation of Young and Cabezas (1999), the output PEI to the chemical process can be 

rewritten as: 

( ) ( )
cp

cp out

out j kj k

j k

I M x    (10) 

where 
( )out

jM  is the output mass flow rate of stream j , 
kjx  the mass fraction of chemical k  in stream j , 

and 
k  the overall PEI for chemical k . 

k  can be calculated from: 

s

k l kl

l

   (11) 

where s

kl  is the normalized specific PEI of chemical k  for the impact category l , and 
l  is the relative 

weighing factor of impact category l . The impact score of chemical k  is normalized within each impact 

category to ensure that values from different categories contain the same units, and have on average 

equivalent scores (Young and Cabezas, 1999). The normalized impact scores are accessible from the WAR 

algorithm add-in included in the COCO Simulation Environment released by AmsterCHEM in collaboration 

with the USA EPA (Barrett et al., 2011). The weighing factors (
l ) express the relative importance of the 

impact categories (Table 6), and can range from 0 to 10 according to the specific concerns of the design 

engineer. This study assigns uniform weighing factors equal to unity, just to illustrate the general case 

where all the categories have the same importance. 
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Table 6: Environmental impact categories considered by the WAR algorithm (Barrett et al., 2011). The unit of LD50 for 
human toxicity is the mass of chemical substance per body mass of target organism. OSHA PEL is the permissible 
exposure limit established for chemicals by the United States Occupational Safety and Health Administration. The 
unit of LC50 for aquatic toxicity refers to fathead minnow, i.e. a small fish species. 

General impact category Impact category Measure of impact category 

Human toxicity 
Ingestion Lethal dose (50%) – LD50 

Inhalation/Dermal OSHA PEL 

Ecological toxicity 
Aquatic toxicity Fathead minnow LC50 

Terrestrial toxicity LD50 

Global atmospheric impacts 
Global warming potential GWP 

Ozone depletion potential ODP 

Regional atmospheric impacts 
Acidification potential AP 

Photochemical oxidation potential PCOP 

The normalized impact scores for all the chemicals used in this study are reported in Table 7. To provide a 

more exhaustive description of the impact across the battery limits of the plant, ( )cp

outI  accounts for the 

reactants and product streams as fugitive emissions by means of a 0.001 multiplying factor (Smith et al., 

2004), since chemical plants are likely to have relevant fugitive losses (Burgess and Brennan, 2001). 

Similar to ( )cp

outI , the output PEI of the energy generation process can be rewritten as: 

( ) ( )
ep-g

ep out

out j kj k

j k

I M x    (12) 

where the subscript ep-g  refers to the gaseous output streams only, as the PEI of solid outputs can be 

assumed negligible compared to those of the gas outputs (Young and Cabezas, 1999). This study considers 

two conventional energy systems: a combined cycle gas turbine for the EE supply, and a large wall-fired 

boiler for the supply of steam to the chemical process. 

Table 7: Normalized impact scores for the chemicals involved in the cumene process as provided by the WAR 
algorithm add-in included in the COCO Simulation Environment. The ODP is omitted since none of the chemical 
components contributes to that category. Values are in PEI/kg. 

Chemical HTPI HTPE TTP ATP GWP PCOP AP 

Benzene 1.38E-01 2.26E-01 1.38E-01 1.06E-01 0 2.29E-01 0 

Propylene 0 8.42E-03 0 0 0 3.83 0 

Propane 0 4.02E-03 0 0 0 1.51E-01 0 

Cumene 1.57E-01 2.96E-02 1.57E-01 4.11E-02 0 8.11E-01 0 

p-DIPB 1.34E-01 0 1.34E-01 6.50 0 1.13 0 

NO2 0 8.05E-01 0 0 0 1.57 1.08E-01 

CO 0 1.32E-01 0 0 0 1.73E-01 0 

CO2 0 8.05E-04 0 0 2.44E-04 0 0 

SO2 0 5.57E-01 0 0 0 1.47E-01 1.54E-02 

Methane 0 1.10E-02 0 0 5.61E-03 4.55E-01 0 

Table 8 reports the pollutant emissions from both systems. NG used as fuel produces these emissions. 
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Table 8: Emission factors for the energy generation process (EPA, 2009). For the generation of electricity, a heat rate 
of 10408 Btu/kWh was assumed (EIA, 2016a). For the generation of steam, a fuel heat content of 1029000 Btu/Mcf 
was considered (EIA, 2016a), and the fuel energy per mass of steam was calculated as 1.2 MBtu/klb (DOE, 2016). 

Chemical 
substance 

Combined cycle gas 
turbine [lb/MBtu] 

Large wall-fired 
boiler [lb/106 scf] 

NO2 0.32 190 

CO 0.082 84 

CO2 110 120000 

SO2 0.0034 0.6 

Methane 0.0086 2.3 

Figure 13 shows the contour lines of the objective function and the optimal solution, i.e. the PEI minimum 

value. The optimal environmental solution (i.e. PEI equal to 3.417E6) is at an inlet temperature of 390 °C 

and a reactor length of 10 m, which corresponds to the very right upper bound of the discretized domain. 

 

Figure 13: Contours of the PEI function with respect to inlet temperature and reactor length. The red point shows the 
optimal set of degrees of freedom. 

3.4 Multi-objective optimization 

Once both the economic and environmental objective functions are computed, it is possible to carry out 

the last step of Figure 1, i.e. the solution of the MOO problem and the selection of the best solution based 

on some trade-off between the different objectives. As already discussed in Sections 3.2 and 3.3, the 

elements of vector f  in Equation (6) are the objective functions   4Cumulated DEP  to be maximized (for 

economic sustainability) and ( )tot

outI  to be minimized (for environmental sustainability). The functional 

dependency of both the economic and environmental performances is illustrated in Figure 14, which shows 

the Pareto curve generated by the arbitrarily chosen economic scenario of our MOO problem. The Pareto 

line features the so-called non-dominated solutions (i.e. configurations), where none of the objective 

functions can be improved without worsening the value of the others. Indeed, the plant configuration 

yielding the best economic performance (i.e. maximum of   4Cumulated DEP ) falls at the right end of the 

curve (point B of Figure 14) and corresponds to a temperature of 365 °C and a reactor length of 7 m. 

Conversely, the best environmental performance (i.e. minimum of ( )tot

outI ) falls at the left end of the Pareto 

line (point A of Figure 14) and corresponds to a reactor inlet temperature of 390 °C and a length of 10 m. 
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The Section 4 provides a discussion about the results and the best trade-off between the economic and 

environmental performances for the optimal design for sustainability of the cumene plant. 

 

Figure 14: Pareto curve for the chosen economic scenario. The Pareto points correspond to the solutions of the MOO 

problem that are non-dominated (   4Cumulated DEP  better if higher; PEI better if lower). 

4 Discussion of results 

This Section is devoted to the assessment of the best trade-off between the maximum   4Cumulated DEP  

and the minimum PEI. Based on the Pareto optimal solutions, the process engineer can choose among a 

number of alternatives depending on specific matters/criteria. Indeed, the configuration yielding the 

maximum   4Cumulated DEP  corresponds to a temperature of 365 °C and a reactor length of 7 m, while 

the minimum PEI is achieved at 390 °C and 10 m. As already discussed in Section 3.1, higher reactor inlet 

temperatures affect both conversion and selectivity, as an increase in conversion decreases the selectivity. 

In particular, higher temperatures contribute to the reduction of PEI as they increase the consumption of 

propylene, which has the highest total specific impact among the components involved in the process, 

apart from p-DIPB, whose emission is four orders of magnitude lower than that of propylene. At the same 

time, the decrease in selectivity plummets the   4Cumulated DEP  because of a reduced cumene 

production. As far as the CAPEX terms are concerned, shorter reactor lengths help enhancing the 

  4Cumulated DEP , but both residence time and conversion get reduced. As a result, the economic 

optimum moves against the environmental best performance. In order to select a proper compromise, it is 

possible to identify the plant configuration that minimizes the geometrical distance from both the 

economic and environmental optima (Azapagic, 1999). According to this criterion, the candidate solution 

on the Pareto line corresponds to 385 °C and 5 m. It is worth observing that the environmental optimum 

corresponds to a higher temperature and a lower reactor length with respect to the economic maximum. 

Interestingly, the identified temperature trade-off is closer to the environmental optimum, while the 

corresponding reactor length is closer to the economic optimum. This may suggest that the environmental 
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performance is mainly affected by the decrease in selectivity because of propylene environmental impact, 

while the economic performance improves with a shorter reactor, i.e. by lowering the CAPEX terms. 

5 Conclusions and future developments 

Aim of the paper was to discuss a general methodology to reconcile environmental concerns with economic 

targets subject to market volatility and within the sustainability issue of chemical plants. The adopted 

methodologies were PCD for economic sustainability and WAR algorithm for environmental sustainability. 

Section 3.2 discussed how CD is unreliable when the economic sustainability of chemical plants under 

market uncertainty is concerned. Douglas’ approach was outdone by PCD method with   4Cumulated DEP  

being the optimal indicator for economic sustainability. PCD allows considering a probabilistic approach to 

future price scenarios and designing the cumene plant by looking at a suitable quotation scenario. On the 

contrary, the results of WAR algorithm and the corresponding PEI objective function do not depend on any 

economic scenarios. 

As already remarked, the results presented in Section 3.4 and discussed in Section 4 refer to an arbitrarily 

chosen economic scenario, which is just one of the trajectories of future scenarios. It should be advisable to 

investigate the Pareto curve for a large number of scenarios and determine the statistical occurrence of a 

certain solution as the preferable MOO compromise. Future work will be devoted to illustrate in detail how 

to accomplish this task. Another limitation of this paper was considering a reduced number of degrees of 

freedom. Therefore, it would be worth increasing the number of decision variables according to the 

suggestions of Gera et al. (2013). Further developments will include the implementation of economic 

indexes that are more financially oriented and differ from Douglas’ EPs, such as the net present value (NPV) 

and the internal rate of return (IRR). Eventually, future work will focus on the integration of social 

sustainability into a tri-objective decision-making problem. 
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Notation 

ADL: Autoregressive Distributed Lag 

AP: Acidification Potential 

ARMAX: AutoRegressive Moving Average with eXogenous inputs 

ARX: AutoRegressive model with eXogenous inputs 

ATP: Aquatic Toxicity Potential 

CAPE: Computer Aided Process Engineering 

CAPEX: CAPital EXpenses 

CD: Conceptual Design 

CO: Crude Oil 

COCO: CAPE-OPEN to CAPE-OPEN 
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DCD: Dynamic Conceptual Design 

DEP: Dynamic Economic Potential 

DOE: Department Of Energy 

EA: Economic Assessment 

EE: Electric Energy 

EIA: Energy Information Administration 

EM: Econometric Model 

EP: Economic Potential 

EPA: Environmental Protection Agency 

FEHE: Feed Effluent Heat Exchanger 

GWP: Global Warming Potential 

HDA: HydroDeAlkylation 

HTPE: Human Toxicity Potential by Exposure 

HTPI: Human Toxicity Potential by Ingestion 

ICIS: Independent Chemical Information Service 

IEA: International Energy Agency 

IRR: Internal Rate of Return 

LC50: Lethal Concentration to 50% of organisms 

LCA: Life Cycle Assessment 

LD50: Lethal Dose to 50% of organisms 

M&S: Marshall and Swift 

MOO: Multi-Objective Optimization 

NARMAX: Non-linear AutoRegressive Moving Average model with eXogeneous inputs 

NARX: Non-linear AutoRegressive model with eXogeneous inputs 

NG: Natural Gas 

NPV: Net Present Value 

ODP: Ozone Depletion Potential 

OPEC: Organization of Petroleum Exporting Countries 

OPEX: Operative Expenses 

OSHA: Occupational Safety and Health Administration 

PCOP: PhotoChemical Oxidation Potential 

PDC: Predictive Conceptual Design 

p-DIPB: para-diisopropylbenzene 

PEI: Potential Environmental Impact 

PEL: Permissible Exposure Limit 

p-IPB: para-isopropylbenzene 

PSE: Process Systems Engineering 

TTP: Terrestrial Toxicity Potential 

WAR: WAste Reduction 

WCED: World Commission on Environment and Development 

WTI: West Texas Intermediate 
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