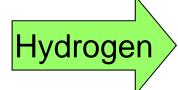
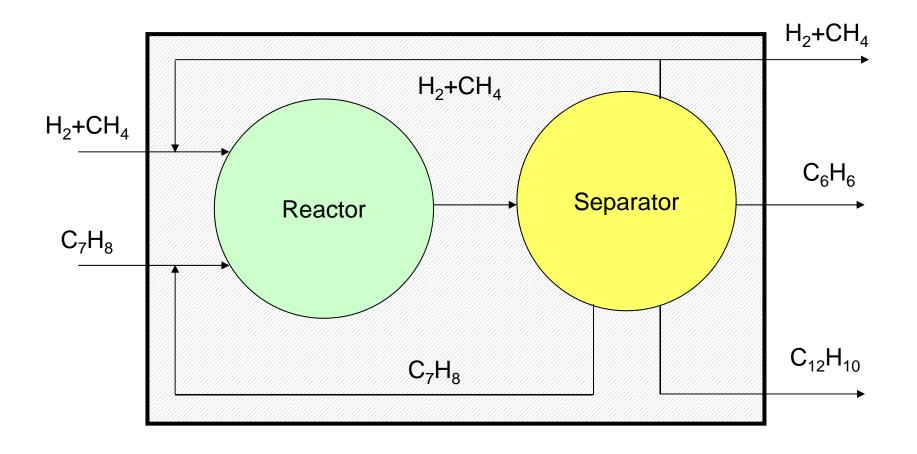

Process System Engineering


Prof. Davide Manca – Politecnico di Milano

Summary of HDA plant exercises

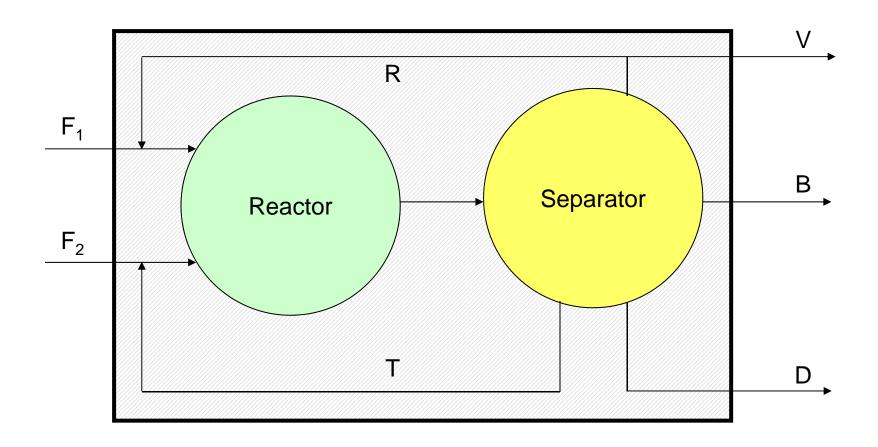
Roberto Abbiati – Valentina Depetri

HDA process

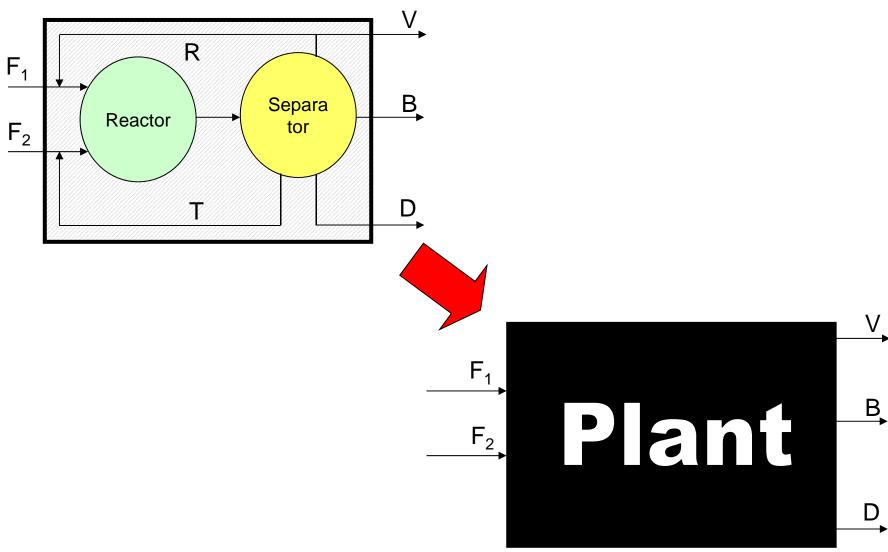


Light Products

Benzene


Heavy Products

HDA process: reactants and products



HDA process: inlet, outlet, and recycle

HDA process: inlet and outlet streams

Conceptual Design

Hierarchy of decisions

- EP1: Batch vs Continuous
- **EP2**: Input-Output structure of the flowsheet

$$EP_2 = \sum_{j=1}^{NPRODUCTS} \in_{P,j} \cdot \dot{n}_j - \sum_{i=1}^{NREACTANTS} \in_{R,i} \cdot \dot{n}_i$$

• **EP3**: Recycle structure of the floowsheet

$$EP_3 = EP_2 - \mathbf{\epsilon}_{reatt} - \mathbf{\epsilon}_{compr}$$

Conceptual Design

Hierarchy of decisions

• **EP4**: General structure of the separation system

$$EP_4 = EP_3 - (CAPEX + OPEX)$$
 separation section

EP5: Heat Exchange Network (not discussed for HDA plant)

If the potential of the *i*-level is greater than zero, the process may be economically attractive; *vice versa*, the process is not economically interesting and the procedure must be interrupted.

Report structure: guidelines

- A general overview of the HDA process/plant
- Material balances and plant specifications
- Reactor design
- ✓ Component molar flows at each temperatures
- ✓ Selectivity vs residence time
- ✓ Conversion vs residence time
- ✓ Conversion vs selectivity
- ✓ Conversion vs temperature
- ✓ Residence time vs temperature

Report structure: guidelines

- Adiabatic temperature calculation: Matlab and UniSim
- Assessing the level-1 economic potential (EP₁)
- Assessing the level-2 economic potential (EP₂):
- \checkmark EP₂ vs x_v (comparison between the alternative uses of biphenyl)
- √ EP₂ vs temperature
- ✓ EP₂ vs conversion
- ✓ EP₂ vs splitting factor
- ✓ Recycle fraction vs x_v

Report structure: guidelines

- Assessing the level-3 economic potential (EP3)
- ✓ Reactor diameter vs x_v
- ✓ Reactor volume vs x_v
- ✓ Reactor CAPEX vs x_v
- \checkmark Recycle flow rate vs x_v
- ✓ Compressor CAPEX vs x_v
- ✓ Compressor OPEX vs x_v
- $\checkmark EP_3 vs x_v$
- Plant layout in Unisim® and Adjust functions
- Assessing the level-4 economic potential (EP₄)
- $\checkmark EP_4 vs x_v$

