Process System Engineering Prof. Davide Manca – Politecnico di Milano ### Summary of HDA plant exercises Roberto Abbiati – Valentina Depetri # HDA process Light Products Benzene Heavy Products ## HDA process: reactants and products # HDA process: inlet, outlet, and recycle # HDA process: inlet and outlet streams ### Conceptual Design #### Hierarchy of decisions - EP1: Batch vs Continuous - **EP2**: Input-Output structure of the flowsheet $$EP_2 = \sum_{j=1}^{NPRODUCTS} \in_{P,j} \cdot \dot{n}_j - \sum_{i=1}^{NREACTANTS} \in_{R,i} \cdot \dot{n}_i$$ • **EP3**: Recycle structure of the floowsheet $$EP_3 = EP_2 - \mathbf{\epsilon}_{reatt} - \mathbf{\epsilon}_{compr}$$ ### Conceptual Design #### **Hierarchy of decisions** • **EP4**: General structure of the separation system $$EP_4 = EP_3 - (CAPEX + OPEX)$$ separation section EP5: Heat Exchange Network (not discussed for HDA plant) If the potential of the *i*-level is greater than zero, the process may be economically attractive; *vice versa*, the process is not economically interesting and the procedure must be interrupted. ### Report structure: guidelines - A general overview of the HDA process/plant - Material balances and plant specifications - Reactor design - ✓ Component molar flows at each temperatures - ✓ Selectivity vs residence time - ✓ Conversion vs residence time - ✓ Conversion vs selectivity - ✓ Conversion vs temperature - ✓ Residence time vs temperature ## Report structure: guidelines - Adiabatic temperature calculation: Matlab and UniSim - Assessing the level-1 economic potential (EP₁) - Assessing the level-2 economic potential (EP₂): - \checkmark EP₂ vs x_v (comparison between the alternative uses of biphenyl) - √ EP₂ vs temperature - ✓ EP₂ vs conversion - ✓ EP₂ vs splitting factor - ✓ Recycle fraction vs x_v ## Report structure: guidelines - Assessing the level-3 economic potential (EP3) - ✓ Reactor diameter vs x_v - ✓ Reactor volume vs x_v - ✓ Reactor CAPEX vs x_v - \checkmark Recycle flow rate vs x_v - ✓ Compressor CAPEX vs x_v - ✓ Compressor OPEX vs x_v - $\checkmark EP_3 vs x_v$ - Plant layout in Unisim® and Adjust functions - Assessing the level-4 economic potential (EP₄) - $\checkmark EP_4 vs x_v$