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• There are at least three distinct fields that characterize the optimization of 
industrial processes 

– Management 
• Project assessment 
• Selecting the optimal product 
• Deciding whether to invest in research or in production 
• Investment in new plants 
• Supervision of multiple production sites 

 

– Design 
• Process design and Equipment design 
• Equipment specifications 
• Nominal operating conditions 

 

– Operation 
• Plant operation 
• Process control 
• Use of raw materials 
• Minimizing energy consumption 
• Logistics (storage, shipping, transport)  Supply Chain Management 

Optimization 
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• The optimization problem is characterized by: 

– Objective function 

– Equality constraints (optional) 

– Inequality constraints (optional) 

• The constraints may be: 

– Linear 
– Nonlinear 

– Violable 

– Not violable 

– Real constraints 

– Lower and upper bounds of the degrees of freedom 

• The optimization variables are defined as: degrees of freedom (dof) 

• Mathematically we have:  
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Definition 
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Linear function and constraints 
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Linear function and constraints 
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Nonlinear function and constraints 
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Nonlinear function and constraints 
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Nonlinear function and constraints 
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Nonlinear constraints + lower/upper bounds 
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Infeasible region 
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• The equality and inequality constraints may also include the model of the process 

to be optimized and the law limits, process specifications and degrees of freedom. 

• The constraints identify a “feasibility” area where the degrees of freedom can be 

modified to look for the optimum.  

• The constraints have to be consistent in order to define a “feasible” searching 

area. 

• There is no theoretical limit to the number of inequality constraints. 

• If the number of equality constraints is equal to the number of degrees of 

freedom the only solution is with the optimal point. If there are multiple solutions 

of the nonlinear system, in order to obtain the absolute optimum, we will need to 

identify all the solutions and evaluate the objective function at each point, and 

eventually selecting the point that produces the best result. 

Constraints 
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• If there are more variables than equality constraints then the problem is 

UNDERDETERMINED and we must proceed to the effective search of the 

optimum point of the objective function. 

• If there are more equality constraints than degrees of freedom then the problem 

is OVERDETERMINED and there is NOT a solution that satisfies all the constraints. 

This is a typical example of data reconciliation. 

Constraints 
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• If both the objective function and constraints are linear, the problem is called 

LINEAR PROGRAMMING (LP) 

• If the objective function and/or the constraints are NOT linear with respect to 

the degrees of freedom, the problem is called NOT linear (NLP) 

• A NLP is more complicated than a LP 

• A LP has a unique solution only if it is feasible 

• A NLP may have multiple local minima 

• The research for the absolute optimum can be quite complicated 

• Often we are NOT interested in the absolute optimum, especially if we are 

performing an online process optimization 

• The research of the optimum point is influenced by the possible discontinuities 

of the objective function and/or constraints 

• If there is a functional dependency among the dof, the optimization is strongly 

affected and the numerical method can fail. For example:  

  2

3

121 3, xxxxfobj 

Features 
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• Usually the objective function is based on an economic assessment of the 

involved problem. For instance: 

 (revenues – costs),  

• Also, the objective function may be based on other criteria such as:  

• pollutant minimization,  

• conversion maximization,  

• yield, reliability, response time, efficiency,  

• energy production 

• environmental impact 

• With reference to the process, if we consider only the operating costs and the 

investment costs are neglected, then we have to solve the so called 

SUPERVISION problems (also CONTROL in SUPERVISION) 

Structure of the objective function 
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• If we consider both operating and investment costs then we fall in the field of 

“Conceptual Design” and “Dynamic Conceptual Design”. 

• Since in CD and DCD the CAPEX terms [€] and OPEX terms [€/y] are not directly 

comparable (due to the different units of measure) a suitable comparison basis 

must be found. This can be the discounted back approach together with the 

annualized approach to CAPEX assessment where the depreciation period 

allows transforming the CAPEX contribution from [€] into [€/y]. 
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Introductory examples 
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PROCESS DATA 1) A + B  E 

2) A + B  F 

3) 3A + 2B + C  G 

RAW MATERIALS 

Component Availability kg/d Cost €/kg 

A 40,000 1.5 

B 30,000 2.0 

C 25,000 2.5 

PRODUCTS 

Process Product Reactant required 
for [kg] of product 

Processing costs Selling price 

1 E 2/3 A, 1/3 B 1.5 €/kg E 4.0 €/kg E 

2 F 2/3 A, 1/3 B 0.5 €/kg F 3.3 €/kg F 

3 G 1/2 A, 1/6 B, 1/3 C 1.0 €/kg G 3.8 €/kg G 

A 

B 

C 

x1 

x2 

x3 

Process 1 

Process 2 

Process 3 

E 

x4 

F 

x5 

G 

x6 

Example #1: Operating profit 
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Statement: We want to find the maximum daily profit.  
   The dof are the flowrates of the single components [kg/d] 

• Profit from selling the products [€/d] 

4x4 + 3.3x5 + 3.8x6 

• Cost of raw materials [€/d] 

1.5x1 + 2.0x2 + 2.5x3 

• Operating costs [€/d] 

1.5x4 + 0.5x5 + 1.0x6 

• Objective function 

f(x) = 4x4 + 3.3x5 + 3.8x6 - 1.5x1 - 2.0x2 - 2.5x3 - 1.5x4 - 0.5x5 + 

    - 1.0x6 = 2.5x4 – 2.8 x5 + 2.8 x6 – 1.5 x1 – 2x2 – 2.5x3 

• Constraints on material balances 

x1  = 2/3 x4 + 2/3 x5 + 1/2 x6 

x2  = 1/3 x4 + 1/3 x5 + 1/6 x6 

x3  = 1/3 x6 

 

 

 

 

 

Example #1: Operating profit 
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• Upper & lower limits on the dof 

0  x1  40,000 

0  x2  30,000 

0  x3  25,000 

 

• The problem is LINEAR in the objective function and constraints. 

• We use LINEAR PROGRAMMING techniques (e.g., the simplex method) to solve 

the optimization problem. Since the objective function is a hyperplane with a 

research area bounded by hyper-lines (i.e. equality and inequality linear 

constraints) the optimal solution is on the intersection of constraints and more 

specifically of equality constraints. 

 

Example #1: Operating profit 
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Statement: 

 We want to determine the optimal ratio, L/D, for a given cylindrical pressurized 
vessel with a given volume, V. 

Hypotheses:  

 The extremities are closed and flat. 

 Constant wall thickness t. 

 The thickness t does not depend on the pressure. 

 The density  of the metal does not depend on the pressure. 

 Manufacturing costs M  [€/kg] are equal for both the side walls and the bottoms.  

 There are not any production scraps 

Unrolling: 

We can write three equivalent objective functions: 
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Example #2: Investment costs 
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By using the specification on the volume V: 

 

By differentiating we obtain: 

 

Then: 

 

N.B.: by modifying the assumptions and considering the bottoms characterized by 

an ellipsoidal shape with higher manufacturing cost, the thickness being also a 

function of the diameter D, the pressure and the corrosiveness of the liquid, 

we get a different optimal L/D :   

 

 

D

VD

D

V
D

D
f

4

2

4

2

2

2

2

1 







0
4

2

1 
D

V
D

dD

df
 3

4



V
Dopt 

3
4



V
Lopt 

1








optD

L

42








optD

L

Example #2: Investment costs 
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Statement: we want to determine the optimal thickness s of the insulator for a large 

diameter pipe and a high internal heat exchange coefficient. We need to find a 

compromise between the energy savings and the investment cost for the installation 

of the refractory material. 

• Heat exchanged with the environment in presence of the refractory: 

Q = U A T = A T / (1/he+s/k) 

• Cost of installation of the refractory material [€/m2] 

F0 + F1 s 

• The insulator has a five-year life. The capital for the purchase and installation is 
borrowed. r is the percentage of the capital + interests to be repaid each year. It 
follows that r > 0.2 

• Ht is the cost of the energy losses [€/kcal] 

• Y are the working hours in a year [h/y] 

• Each year we must return to the bank which provided the loan: 

(F0 + F1 s ) A r [€/y] 

Example #3: CAPEX + OPEX 
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• Heat exchanged with the environment without the refractory material: 

Q = U A T = he A T 

• Annual energy savings due to the refractory: 

[he A T - A T / (1/he+s/k)] Ht Y [€/y] 

• The objective function in the dof s becomes: 

fobj = [he A T - A T / (1/he+s/k)] Ht Y – (F0 + F1 s) A r  

• The problem is solved analytically by calculating: 

d fobj / ds = 0 

• We obtain: 

sopt = k [((T Ht Y)/(k F1 r))½ - 1/he]  

• Note that sopt depends neither on A nor on F0 

Example #3: CAPEX + OPEX 
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Solution methods 
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• The problem:                       can always be turned into: 

by changing the sign of the objective function 

• The optimization problem can deal with two distinct approaches: 

• Equation oriented: based on an overall approach model that describes 

the process with a single system of equations (in general differential-

algebraic) that solves the problem by considering it as a set of constraints 

• Black-box or Sequential modular: the process model is called by the 

optimization routine and returns the data required to evaluate the 

objective function 

• The simulation model can then work in terms of either  FEASIBLE 

PATH or INFEASIBLE PATH, depending on whether the equations 

related to the recycle streams are solved for each call or if the 

consistency of the recycles is introduced as a linear constraint in the 

structure of the optimization problem 

)(  xfMax )(  xfMin

Solution methods 
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Equation-oriented formulation 

The equality constraints h contain all the equations describing the model of the 

device/equipment/process/plant to be optimized. 

In general h can be a system of differential-algebraic equations, DAE, in the form: 

 , , , t h x x p 0

Optimization 
routine 

x
User defined: 

        f(x) 

h(x) = 0 

g(x) ≤ 0 

 
, ,f h g
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Black-box formulation 

Optimization 
routine 

x User defined: 
      f(x,v) 

     hreal (x,v) = 0 

g(x,v) ≤ 0 

 

 
User defined 

solver: 
hmodel (x,v) = 0 

 

The model of the device/equipment/process/plant 

is solved by a user-defined solver outside of the 

real constraints that are directly dealt and satisfied 

by the optimization routine. 

Also in this case, hmodel can be a DAE system:  , , , ,model t  h x x v v 0

x

, ,realf h g

v
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Methods for multidimensional 
unconstrained optimization 
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• There is a necessary condition to be fulfilled for the optimal point: 

that is the gradient of f(x) must be zero (this is not true for cusp points and 

more in general for discontinuous functions) 

• Sufficient condition for the minimum is that:                         the Hessian matrix of 

f(x) must be positive definite. 

• There are three distinct classes of methods that differ in the use of the 

derivatives of the objective function during the search for the minimum: 

• HEURISTIC methods do not use the derivatives of f(x). They are more 

robust because they are slightly if not affected by the discontinuities of 

the problem to be solved. 

• FIRST ORDER methods work with the first order partial derivatives of f(x) 

i.e. the GRADIENT of the objective function. 

• SECOND ORDER methods use also the second order partial derivatives of 

f(x) i.e. the HESSIAN of the objective function. 

0)( *  xf

0)( *2  xf

Multidimensional unconstrained optimization 
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• The numerical algorithms are intrinsically iterative and usually perform a series 

of direction-searches. At the k-th iteration we have the k-th direction sk and the 

method minimizes f(x) along sk. 

• DIRECT or HEURISTIC methods: 

• Random search (Montecarlo) 

• Grid search (heavy but exhaustive) 

• Univariate research we identify n directions (where n is the number of 
dof) with respect to which perform iteratively the optimization. 

x0 

xOtt 

Multidimensional unconstrained optimization 
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Simplex method (Nelder & Mead, 1965) 

• The simplex is a geometric figure having n+1 vertices for n dof. We identify the worst 
vertex (i.e. having the highest value for f(x)) and we reverse it symmetrically with 
respect to the center of gravity of the remaining n-1 vertices. We identify a new 
simplex respect to which continue the search. The overturning of the simplex may be 
subject to expansion or contraction according to the actual situation. 

 

x0 

xOtt 

Multidimensional unconstrained optimization 
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Conjugate directions method 

 Considering a quadratic approximation of the objective function it is possible to 
identify its conjugate directions. 

 

Hp.: f(x) is quadratic 

1. x0 generic 

2. s generic 

3. xa minimum on s 

4. x1 generic 

5. t parallel to s 

6. xb minimum on s 

7. u from joining xa and xb 

 

 u is the conjugated direction with respect to s and t and by minimizing it we 
identify the optimal point xott of f(x) (for that quadratic approximation). 

x0 

x1 

xa 

xb 

xott 

s 

t 

u 

Multidimensional unconstrained optimization 
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First order indirect methods 

 A possible candidate search direction s must decrease the function f(x). It must 
satisfy the condition:  

 

 

                In fact: 

 

 

                only if: 

 

 

 The gradient method selects the gradient of the objective function (in the 

opposite direction) as the search direction . 

 The idea of moving in the direction of the maximum slope (i.e. “Steepest 
Descent”) may be not optimal. 

0)(  sfT
x

)(xf
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Multidimensional unconstrained optimization 
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Gradient method 

 

 

  Easy search 

 

 

 

 

 

    Difficult search 
x0 

x0 

xott 

Multidimensional unconstrained optimization 

xott 
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Second order indirect methods 

They exploit the second order partial derivatives of the objective function. 

Implementing the Taylor series truncated at the second term and equating the 

gradient to zero we get: 

 

Consequently, it must be:  

 

N.B.: the Hessian matrix is not inverted, we solve the resulting linear system via 

the LU factorization. 

In addition, the Hessian matrix is NOT calculated directly as it would be very 
expensive in terms of CPU computing time. On the contrary, the BFGS formulas 
(Broyden, Fletcher, Goldfarb, Shanno) allow starting from an initial estimation of H 
(often the identity matrix) and with the gradient of f(x) they evaluate iteratively 
H(x). 

The solving numerical methods are:  
Newton, Newton modified: Levemberg-Marquardt, Gill-Murray. 

0)()(  kkkf xxHx

)()(1

1 kkkk f xxHxx  



Multidimensional unconstrained optimization 
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Some peculiar objective functions 
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Some peculiar objective functions 
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Some peculiar objective functions 
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Methods for multidimensional 
constrained optimization 
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• The objective function and the equality and inequality constraints are all LINEAR. 

Thus, the objective function is neither concave nor convex. Actually, it is either a 

plane (2D) or a hyperplane (with n dof). 

If the region identified by the constraints is consistent we have to solve a problem 

(“feasible”) that will take us on the way to the constraints and more specifically 

towards their intersection. 

• Simplex Method LP  

12 

10 

8 
6 

4 

xOtt 

x0 

It is first necessary to identify a 

starting point that belongs to the 

“feasible” region. 

Then we move along the sequence of 

constraints until we reach the optimal 

point. 

The problem may also NOT have a 

“feasible” region of research. 

 

Linear Programming 
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Method of the Lagrange multipliers 

 The inequality constraints,                 , if violated, are rewritten as equality 

constraints by introducing the slack variables: 

  

0)( 2 xg

( ) 0g x

Nonlinear Programming 
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Method of the Lagrange multipliers 

The objective function is reformulated to contain both the equality and inequality 

constraints: 

 

 

There are necessary and sufficient conditions to identify the optimal point that 

simultaneously satisfies the imposed constraints. 

It is easy to see how the problem dimensionality increases. 
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Nonlinear Programming 
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Penalty Function method 

We change the objective function by summing some penalty terms that quantify 

the violation of inequality and equality constraints: 

 

 

More generally:  
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SQP method  (Successive Quadratic Programming) 

 The objective function f(x) is approximated iteratively with a quadratic function, 

while the constraints are linearized and added to the objective function: 

 

 

 

 

 the search for the optimal point is made along a direction s (identified by the 

vector x) over which the objective function and constraints have been formulated. 

 Matrix B is an approximation of the Hessian matrix H and is calculated with the 

BFGS formulas (Broyden, Fletcher, Goldfarb, Shanno). 
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Case-study #1 
 

On-line optimization of 
continuous processes 
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Waste to energy plant with DeNOx catalytic section 

On-line optimization of continuous processes 

D. Manca, M. Rovaglio, G. Pazzaglia, G. Serafini. Comp. & Chem. Eng., 22(12), 1879-1896, (1998) 
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• Requirements of the optimization procedure 

• Economic optimization of the process:  

• maximize the steam production and then electrical energy.  

• Minimize the operating costs 

• Respect the process constraints for a correct plant operation 

• Respect the law constraints 

 

 

• Alternatively 

• Minimize the production of micropollutants 

• Reduce environmental impact 

• Optimal mixing of wastes having different nature 

On-line optimization of continuous processes 
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 Objective function to be maximized 

 

 

 Degrees of freedom 
 Waste flowrate  Total air flowrate to the furnace Air flow first drum 
 Air flow rate second drum Air flow third drum  Air flow fourth drum 
 Secondary air flow to furn. Air flow afterburner        CH4 flow rate afterburner 
 First drum speed     Second drum speed   Third drum speed  
 Fourth drum speed  NaOH flow   CH4 DeNOx flow 
 NH3 DeNOx flowrate 
   

 Law constraints   Process constraints 
 % vol. min. O2 afterburner      Delta P max on every drum 
 T out min. afterburner   T in max. and min. DeNOx reactor 
 HCl max to the stack   % max. unburnt in ashes 
 SO2 max to the stack    Max. and min. steam produced 
 NOx max to the stack    % vol. max. O2 afterburner 
 NH3 max to the stack    Delta max. combustion on the first 3 drums 
      T out max. and min. primary combustion chamber 
 

 Higher and lower constraints on the degrees of freedom 

 
4 4 4 3 3, ,obj rif rif vap vap CH PC CH DeNOx CH NH NHF W c W c W W c W c    

On-line optimization of continuous processes 

D. Manca, M. Rovaglio, G. Pazzaglia, G. Serafini. Comp. & Chem. Eng., 22(12), 1879-1896, (1998) 
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Problem solution 

• We must adopt a nonlinear constrained multivariable optimization routine which 

is efficient (in terms of CPU time) and robust (able to identify the solution). 

• We must implement a detailed model of the process able to simulate the 

response of the system whenever the optimization routine proposes a new 

degrees of freedom vector. 

• The process optimizer has as its main task to bring the system to operate in the 

“feasible” region, where the constraints are respected. In some cases, it may 

happen that the objective function worsens compared to the initial conditions 

since the process is brought to operate within the feasibility region. Then, within 

this region, the optimizer maximizes the objective function. 

• Note that the explicit computation of the objective function is almost 

instantaneous. This does not occur for the evaluation of each single term which 

composes the objective function as they come from the simulation procedure of 

the process. 

On-line optimization of continuous processes 
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Process model – the equations 
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Process model – the equations 
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Process model – the equations 
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Results: 

On-line optimization of continuous processes 
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On-line optimization of continuous processes 

Rovaglio, M., Manca, D., Rusconi, F. Waste Management 18, 525-538, (1998) 
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On-line optimization of continuous processes 

Rovaglio, M., Manca, D., Rusconi, F. Waste Management 18, 525-538, (1998) 

© Davide Manca – Process Systems Engineering – Master Degree in ChemEng – Politecnico di Milano 68 



L6— 

Case-study #2 
 

On-line optimization of 
discontinuous processes 
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Slop-cut P1 

P2 

Two-components batch distillation 

1. Total reflux 

2. Collection of P1 in the dedicated tank 

3. Out-of-spec collection in the “slop-cut” 

4. Collection of P2 in the still pot 

On-line optimization of discontinuous processes 
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• There are three distinct approaches to the selection of the objective function 

when distillation batch processes are involved: 

1. Maximizing the product quantity 

 Converse and Gross (1963) were the first researchers to face the optimization 

problem for a batch distillation column. Logsdon et al. (1990) solved the NLP. 

2. Minimization of the distillation time 

 The reflux profile is divided into a number of intervals with the target of 

reducing the total distillation time (Coward, 1967). Mujtaba and Macchietto 

(1988) solved the problem adopting the SQP algorithm. 

3. Profit maximization 

 The method is based on a profit function, for instance the capacity factor, that 

takes into account both the quantity/quality of the product and the total 

distillation time. Kerkhof and Vissers (1978), Logsdon et al. (1990), Diwekar 

(1992). 

Optimal trajectory 
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• There are three distinct approaches to the selection of the degrees of freedom 

when distillation batch processes are involved: 

1. Constant reflux distillation 

 The degrees of freedom are: pressure, vapor flowrate inside the column, 

distillate flowrate. 

2. Constant composition 

 The degrees of freedom are: pressure, vapor flowrate, and the purity of the key 

component that remains constant throughout the batch.  

3. Variable reflux profile 

 The degrees of freedom are: pressure and reflux ratio (or equivalently the 

distillate flowrate) at every time of the batch    Optimal trajectory. 

Optimal trajectory 
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t  (h) 

D (mol/h) 

Δti Di 

t (h) 

D (mol/h) Variable reflux profile 

Optimal trajectory 
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The DAE system comprises 

(NS+2)(NC-1)+1 ODE (mass + energy balances) 

(NS+1) NC  AE (thermodynamic equilibria) 

(NS+2)  AE (stoichiometric equations) 

Optimal trajectory 

D. Manca.  Chemical Product and Process Modeling, 2,12 (2007) 
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Objective function +  
constraints Variables 

Initial values 

OPTIMIZER 

Optimal solution 

MODEL 

SQP 

Simplex 

Robust method searching the solution within the 
entire domain of the dof 

OPTIMIZATION 
METHODS 

Optimal trajectory 
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Optimal trajectory 

D. Manca.  Chemical Product and Process Modeling, 2,12 (2007) 
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Optimal trajectory 
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Case-study #3 
 

Model based control of 
industrial processes 
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• Industrial processes are characterized by the following control problems: 

1. The process is almost usually multivariate 

• several controlled variables: y1, y2,…, yn 

• several manipulated variables: u1, u2,…, um 

• several disturbance variables: d1, d2,…, dk 

2. Complex dynamic behaviour: 

• time delays due to the inertia of the system (either material or energetic), 

mass flow in the pipes, long measuring times 

• Inverse response 

• possible instability at open-loop 

Introduction 
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3. Intrinsic nonlinearity of the system 

4. Operative constraints that are quite dissimilar and complex 

• constraints on the input and output variables 

• constraints on the changing rate of the input variables 

• Constraints on the optimal value of the input variables (e.g., economic 

value)  

• process and law constraints 

• soft and hard constraints 

Introduction 
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An ideal control system should be: 

• Multivariable and capable of managing: 

• time delays,  

• inverse response, 

• process and law constraints,  

• measurable and non-measurable disturbances 

• Minimize the control effort 

• Able of inferring the unmeasured/unmeasurable variables from the measured 

ones 

• Robust respect to the modeling errors/simplifications and the noise of the 

measured variables 

• Able to manage both the startups and shutdowns (either programmed or 

emergency) as well as the steady-state conditions 

Model based control 
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• The availability of dynamic numerical models of: 

• chemical/industrial processes,  

• unit operations 

• process units, 

• plant subsections 

• … 

allows forecasting the response of the simulated plant/process to possible 

disturbances and manipulated variables. 

 

• The availability of such dynamic numerical models paves the way to the so-called: 

model based control. 

• The model of the process can be used to forecast the system response to a set of 

control actions originated by modifying a suitable set of manipulated variables. 

Model based control 
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• We are going to answer the following question: 

What is the response of the system to a modification of the manipulated 

variables? 

• More specifically, we can imagine to deploy an optimizing procedure that looks for 

the best response of the system subject to the manipulation of the process variables. 

• According to the most simplified approach, we have: 

• the control specifications, i.e. the setpoint 

• the objective function that measures the distance of the controlled variable 

from the setpoint 

• the dynamic model of the system usually 

described by a DAE system, which plays 

the role of the equality constraints 

• the manipulated variables that are the 

degrees of freedom of optimization 

problem 

 

Model based control 
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ysp   = y set point (setpoint trajectory) 

y    = y model response 

yr    = y real, measured response 

u    = manipulated variable 

y(k-1) 

y(k) 
y(k+1) 

u(k) 

Future Past 

k k+1 k+2 k+3 k+4 k+5 … 

Time horizon 

yr(k-1) 

yr(k) 

ysp(k-1) 

ysp(k) 

ysp(k+1) 

Model predictive control 
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• The system follows a specified trajectory  optimal setpoint trajectory, ysp 

• The model is called to produce a prediction, y, of the real response of the system. 

• We have: 

• response in the future: y(k+1), y(k+2), y(k+3), … 

• respect to past real inputs: u(k), u(k1), u(k2), … 

• respect to future manipulated inputs: u(k+1), u(k2), … 

• The numerical model of the process to be controlled is used to evaluate a sequence 

of control actions that optimize an objective function to:  

• Minimize the system response y respect to the optimal set-point trajectory, ysp 

• Minimize the control effort 

MPC features 
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• Since the model is a simplified representation of the real system, it is intrinsically not 

perfect. This means that there is a discrepancy between the real system and the 

modeled one. 

• The present error k between the real system and the model is: 

 

 

• This error is kept constant and it is used for future forecasts.  

   k ry k y k  

MPC features 
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MPC mathematical formulation 
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It can be the same optimal value of the steady state conditions for the 

manipulated variables (e.g., nominal operating conditions). 

MPC mathematical formulation 
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Critical elements of the MPC 
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stack fan 

inlet water 

outlet water 

auxiliary  
burners 

vapor inlet 

vapor outlet 

vapor inlet 

vapor outlet 

primary burners 

inlet water 

inlet  
stream 

MPC of the steam reforming process 

CH4 + H2O  CO + 3H2H = +206 kJ/mol  

CO + H2O  CO2 + H2H = -41 kJ/mol  
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Control 
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smokes 

syn-gas 

FT 

Control layout of the steam reforming section 
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We start from the steady-state model of Singh and Saraf (1979) 

 

Main assumptions: 

• pseudo-homogeneous 

• monodimensional model: neither axial nor radial dispersions 

• discretization into a series of CSTR 

• subdivision into layers of the pipe thickness 

Process model 
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Material balance 

Energy balance on the gas-catalyst system 

 V 

k-th reactor 

Tk-1 Pk-1 

Fk-1,i 

Tk Pk 

Fk,i 

k NCSTR i NC 1 1,..... ,......            

Process model: inside the reforming pipes 
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Process model: pipes 
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Process model: firebox (radiative chamber) 
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Validation of the numerical model 
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System dynamics at open loop 
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Over-response:  slow dynamics + fast dynamics 

System dynamics at open loop 
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Input 

Output 

Controlled variables: 

• outlet gas temperature 

• hydrogen flowrate 

Process 

Manipulated variables: 
• fuel flowrate 
• steam flowrate 
 
 
 
Measurable disturbances: 
• dry flowrate 
• inlet gas temperature 

Definition of the main variables 
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  hp: prediction horizon 

High values of hp produce: 

• increased predictive capability 

• less vigorous control actions 

• higher distances from setpoints 
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Control horizon and prediction horizon 
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  hc: control horizon 

High values of hc produce: 

• better controllability 

• more vigorous control actions 

• higher number of dof 
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Control horizon and prediction horizon 
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u 

High values of uproduce: 

• small variations of the 

   manipulated variables 

• more sluggish controllers 

• more stable controllers 
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MPC: closed loop response 
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