Increasing the Understanding of the BP Texas City Refinery Accident

Davide Manca, Sara Brambilla, Alessandro Villa Dipartimento di Chimica, Materiali e Ingegneria Chimica Politecnico di Milano – ITALY

21st European Symposium on Computer Aided Process Engineering Porto Carras, Chalkidiki, Greece 29 May – 1 June 2011

© D. Manca, S. Brambilla, A. Villa – Escape 21, Chalkidiki, Greece 29-June – 1-June 2011

ACCIDENT EVENT: explosion and fire during the startup of the isomerization unit of C6/C7 alkanes on Wednesday, March 23rd, 2005

CONSEQUENCES ON PEOPLE: 15 fatalities and 180 casualties

ECONOMIC LOSS: US\$ 1.5 billion

LEGAL CONSEQUENCES: a fine of US\$ 87 million was inflicted to BP due to the violation of safety laws

PLANT SHUTDOWN: 12 months (up to March 2006)

© D. Manca, S. Brambilla, A. Villa – Escape 21, Chalkidiki, Greece 29-June – 1-June 2011

Scope of the work

ACCIDENT EVENT RECONSTRUCTION:

- 1. Analyze the CAUSES;
- 2. Study the **DYNAMIC EVOLUTION** of events;
- **3**. Cover the **KNOWLEDGE GAPS** of literature reports and papers.

C6/C7 isomerization section

© D. Manca, S. Brambilla, A. Villa – Escape 21, Chalkidiki, Greece 29-June – 1-June 2011

Timeline of the accident

Source: "Anatomy of a disaster" (www.csb.com)

© D. Manca, S. Brambilla, A. Villa – Escape 21, Chalkidiki, Greece 29-June – 1-June 2011

Timeline of the accident

Source: "Anatomy of a disaster" (www.csb.com)

© D. Manca, S. Brambilla, A. Villa – Escape 21, Chalkidiki, Greece 29-June – 1-June 2011

Gaps in the available literature

LITERATURE

- Mogford J., "Fatal Accident Investigation Report, Isomerization Unit Explosion Final Report", (2005)
- **CSB**, "BP Texas City Refinery Explosion and Fire Investigation Report", (2007)
- Khan F. I., P. R. Amyotte, "Modeling of BP Texas City Refinery Incident", J. Loss Prev. Process Ind., 20, 387-395, (2007)

GAPS

- > The real cause of the column flooding
- Missing analysis of the liquid-level dynamics inside the column
- Missing model of the dynamics of the fluid inside the blowdown duct
- The source of available data is not always clear and defined

It is therefore necessary to model the flooding of the column and the liquid-vapor transfer to the stack through the blowdown duct

Simulation of the column flooding

- The column was undergoing a startup procedure: no distillation operation was occurring.
- The column is modeled by a TANK whose volume is the same of the column once the volume taken up by trays is subtracted.

Y Timeline of the column flooding

02:18 am: start of feed to the column

03:20 am: suspension of startup procedure

09:52 am: restart of feed to the column

10:00 am: furnace startup. The bottom recycle is heated in the furnace
12:41 am: the operators open the 8" manual valve and close it at 12:55
12:55 am: the heavy raffinate is withdrawn from the bottom and preheats the feed to the column

01:00 pm: the amount of bottom product becomes larger than the inlet feed

01:09 pm: the operators open the 1.5" manual valve The resulting heating and the sudden depressurization take to the partial vaporization of the inlet feed

01:13 pm: flooding

> Dynamics of the column flooding

Liquid level dynamics in the column

The expansion of the liquid head cannot explain alone the final outflow from the top of the column.

It is necessary to write a model for the bubble going up through the liquid head.

Hypothesis

 EXPANSION OF THE LIQUID PHASE over the feed tray due to both the heating action and partial vaporization (*i.e.* bubbles presence)

Model of the column flooding

3. Rise time of bubbles

$$t_B = \frac{\Delta h}{u_B}$$
 where Δh is the liquid head over the feed tray

Model of the column flooding

4. Overall bubble volume

© D. Manca, S. Brambilla, A. Villa – Escape 21, Chalkidiki, Greece 29-June – 1-June 2011

Time [h]

13:13

13:15

13:11

Ξ

Liquid level

48

46

13:09

The blowdown system

OBJECTIVE

Evaluate initial P and T that allow the fluid reaching the end of the blowdown duct

HYPOTHESIS

- P and T before the safety valves: **3.72 atm** and **112.4 °C**.
- Negligible pressure drops across the safety valves (once open)

ITERATIVE NUMERICAL PROCEDURE

- **Time discretization**: given a proper time interval Δt , we evaluate the dynamics of the fluid front:
 - 1. Mass flowrate (G)
 - 2. Fluid velocity (u)
 - **3.** Distance (Δ**x**)
 - 4. Pressure (P)
 - 5. Temperature (T)

STOP CONDITIONS

 $1. \quad \sum \Delta x(t) \ge L$

2.
$$P \leq P_{atm}$$

© D. Manca, S. Brambilla, A. Villa – Escape 21, Chalkidiki, Greece 29-June – 1-June 2011

Numerical procedure

1. Mass flowrate

- 3. Distance
 - we assume that the fluid moves at constant velocity within the time step
 - **the traveled distance during time step** Δt is: $\Delta x = u \Delta t$

Numerical procedure

4. Pressure

- Hypothesis: concentrated pressure drops are negligible
- **Δ** Distributed preessure drop ΔP along Δx :

Darcy Weisbach $\Delta P = \Delta P_L = f_D \frac{\rho}{2} u^2 \frac{\Delta x}{D}$

$f_D = f(\operatorname{Re}, \varepsilon)$

5. Temperature

- Hypothesis: the process is adiabatic
- The temperature is constant as long as the fluid is liquid and eventually starts decreasing as soon as the evaporation starts

EQUILIBRIUM TEMPERATURE (adiabatic flash)

Numerical procedure

© D. Manca, S. Brambilla, A. Villa – Escape 21, Chalkidiki, Greece 29-June – 1-June 2011

Results

© D. Manca, S. Brambilla, A. Villa – Escape 21, Chalkidiki, Greece 29-June – 1-June 2011

Conclusions

- This presentation showed some innovative elements respect to available literature and reports;
- Evaluation of the liquid head in the column due to the thermal expansion and partial evaporation;
- Quantification of the volumetric expansion of the liquid phase and evaluation of the flooding dynamics in the column;
- The hypotheses adopted in the literature and in the reports are neither correct nor consistent.

FUTURE DEVELOPMENTS

- Detailed fluid dynamic analysis of the two phase mixture inside the blowdown duct;
- Modeling of the pool spreading, pool evaporation, gas dispersion, ignition, explosion, and pool fire.

Increasing the Understanding of the BP Texas City Refinery Accident

Davide Manca, Sara Brambilla, Alessandro Villa Dipartimento di Chimica, Materiali e Ingegneria Chimica Politecnico di Milano – ITALY

davide.manca@polimi.it

THANK YOU FOR YOUR KIND ATTENTION!

© D. Manca, S. Brambilla, A. Villa – Escape 21, Chalkidiki, Greece 29-June – 1-June 2011