

Lab #1

Exercise 1

A biological process is operated in a batch reactor characterized by the growth of biomass (B) at a loss of substrate (S). The material balances for the two species are:

 $\begin{cases} \frac{dB}{dt} = \frac{k_1 BS}{k_2 + S} \\ \frac{dS}{dt} = -k_3 \frac{k_1 BS}{k_2 + S} \end{cases}$

Determine the dynamics of both the substrate and biomass over 15 h, knowing that:

$$k_1 = 0.5 \text{ h}^{-1}$$

 $k_2 = 10^{-7} \text{ kmol/m}^3$
 $k_3 = 0.6$

The initial conditions are:

 $\begin{cases} B(0) = 0.03 \text{ kmol/m}^3 \\ S(0) = 4.5 \text{ kmol/m}^3 \end{cases}$

Solve the problem in Matlab. Modify the parameters for the error control of the ordinary differential system by adopting a relative tolerance of 10^{-8} and an absolute one of 10^{-12} (respect to the default Matlab values). Compare the two dynamics.

Exercise 2

Consider an intermediate storage tank that is perfectly mixed (CST) and heated. Evaluate the dynamics of the outlet temperature after a step disturbance of 30 °C on the inlet temperature, given the following data:

- Heat power supplied to the system: Q = 1 MW
- Inlet flowrate: $F_i = 8 \text{ kmol/s}$
- Mass holdup of the CST: m = 100 kmol
- Specific heat of the mixture: cp = 2.5 kJ/kmol K
- Inlet temperature: $T_i = 300 \,\mathrm{K}$

Exercise 3

Let us consider the mixing of two streams featuring different concentrations of the same component.

Input data:

- Stream 1: $F_1 = 2 \text{ m}^3/\text{h}$; $c_1 = 0.5 \text{ kmol}/\text{m}^3$
- Stream 2: $F_2 = 10 \text{ m}^3/\text{h}$; $c_2 = 6 \text{ kmol}/\text{m}^3$
- Volume of the mixer: $V_{mixer} = 12 \,\mathrm{m}^3$

Determine the outlet concentration dynamics from the mixer when the flowrate, F_1 , varies linearly with the time as follows: $F_1 = 0.04 \times t$, up to the maximum value of: $20 \text{ m}^3/\text{h}$.

Exercise 4

A side reaction occurs in a storage tank. The variations of conversion (z) and temperature (θ) can are described by the following formula:

$$\left| \frac{dz}{d\tau} = \frac{\psi}{B} (1 - z)^n h(\theta) \right|$$
$$\frac{d\theta}{d\tau} = \psi (1 - z)^n h(\theta) - \theta$$

In these reactions, *B* is the heat of reaction; *n* is the reaction order; ψ the ratio between the reaction heat and the heat removed by heat exchange; ε is the reaction activation energy; *h* is the exponential term of the reaction kinetics:

 $h(\theta) = \exp\left[\frac{\theta}{1 + \varepsilon \theta}\right]$

All the variables are non-dimensional.

Evaluate the temperature dynamics when ψ varies between 0.35 and 0.65, with the following parameter values:

- *n* = 1
- B = 20
- $\varepsilon = 0.05$

The initial conditions are:

- z(0)=0
- $\theta(0) = 1$.