

Model Predictive Control

Davide Manca

Lecture 6 of "Dynamics and Control of Chemical Processes" – Master Degree in Chemical Engineering

Introduction

- Industrial processes are characterized by the following control problems:
 - 1. The **process** is almost usually **multivariate**
 - several controlled variables: y_1, y_2, \dots, y_n
 - several manipulated variables: $u_1, u_2, ..., u_m$
 - several disturbance variables: $d_1, d_2, ..., d_k$
 - 2. Complex dynamic behaviour:
 - time delays due to the inertia of the system (either material or energetic), mass flow in the pipes, long measuring times
 - Inverse response
 - possible instability at open-loop

Introduction

- 3. Intrinsic **nonlinearity** of the system
- 4. **Operative constraints** that are quite dissimilar and complex
 - constraints on the input and output variables
 - constraints on the changing rate of the input variables
 - Constraints on the optimal value of the input variables (*e.g.*, economic value)
 - process and law constraints
 - soft and hard constraints

Model based control

An ideal control system should be:

- <u>Multivariable</u> and capable of managing:
 - time delays,
 - inverse response,
 - process and law constraints,
 - measurable and non-measurable disturbances
- Minimize the control effort
- Able of <u>inferring</u> the unmeasured/unmeasurable variables from the measured ones
- <u>Robust</u> respect to the modeling errors/simplifications and the noise of the measured variables
- Able to manage both the *startups* and *shutdowns* (either programmed or emergency) as well as the steady-state conditions

Model based control

- The availability of **dynamic numerical models** of:
 - chemical/industrial processes,
 - unit operations
 - process units,
 - plant subsections
 - ...

allows forecasting the response of the simulated plant/process to possible disturbances and manipulated variables.

- The availability of such dynamic numerical models paves the way to the so-called: model based control.
- The model of the process can be *used* to forecast the system response to a set of control actions originated by modifying a suitable set of manipulated variables.

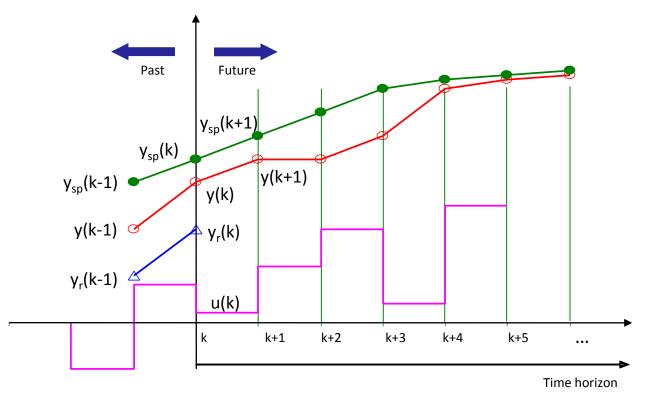
Model based control

• We are going to answer the following question:

What is the response of the system to a modification of the manipulated variables?

- More specifically, we can imagine to deploy an optimizing procedure that looks for the best response of the system subject to the manipulation of the process variables.
- According to the most simplified approach, we have:
 - the control specifications, *i.e.* the setpoint
 - the objective function that measures the distance of the controlled variable from the setpoint
 - the dynamic model of the system usually described by a DAE system, which plays the role of the equality constraints
 - the manipulated variables that are the degrees of freedom of the optimization problem

Model predictive control



- y_{sp} = y set point (setpoint **trajectory**)
- y = y model response
- y_r = y real, measured response
- u = manipulated variable

MPC features

- The system follows a specified trajectory \rightarrow optimal setpoint trajectory, y_{sp}
- The model is called to produce a prediction, y, of the real response of the system.
- We have:
 - response in the future: y(k+1), y(k+2), y(k+3), ...
 - respect to past real inputs: u(k), u(k-1), u(k-2), ...
 - respect to future manipulated inputs: u(k+1), u(k+2), ...
- The numerical model of the process to be controlled is *used* to evaluate a sequence of control actions that optimize an objective function to:
 - Minimize the system response y respect to the optimal set-point trajectory, y_{sp}
 - Minimize the control effort

MPC features

- Since the model is a simplified representation of the real system, it is intrinsically not perfect. This means that there is a discrepancy between the real system and the modeled one.
- The present error \mathcal{E}_k between the real system and the model is:

$$\varepsilon_k = y_r(k) - y(k)$$

• This error is kept constant and it is used for future forecasts.

$$\begin{split} & \min_{\mathbf{u}(k),\mathbf{u}(k+l),\dots,\mathbf{u}(k+l_{k}-l)} \left\{ \sum_{j=k+1}^{k+h_{p}} \left[\boldsymbol{\omega}_{y} \mathbf{e}_{y}^{2}\left(j\right) + \mathbf{PF}_{y}\left(j\right) \right] + \sum_{i=k}^{k+h_{p}-1} \left[\boldsymbol{\omega}_{u} \Delta \mathbf{u}^{2}\left(i\right) + \mathbf{PF}_{u}\left(i\right) \right] + \sum_{l=k}^{k+h_{p}-1} \boldsymbol{\omega}_{T} \delta \mathbf{u}_{T}^{2}\left(l\right) \right\} \\ & \mathbf{e}_{y}\left(j\right) = \frac{\left[\mathbf{y}\left(j\right) + \delta_{y}\left(k\right) \right] - \mathbf{y}_{sp}\left(j\right)}{\mathbf{y}_{sp}\left(j\right)} \qquad \delta_{y}\left(k\right) = \mathbf{y}_{r}\left(k\right) - \mathbf{y}\left(k\right) = \mathbf{y}_{real}\left(k\right) - \mathbf{y}_{model}\left(k\right) \\ & \mathbf{PF}_{y}\left(j\right) = \left\{ Max \left[\mathbf{0}, \frac{\mathbf{y}\left(j\right) - \mathbf{y}_{MAX}}{\mathbf{y}_{MAX}} \right] \right\}^{2} + \left\{ Min \left[\mathbf{0}, \frac{\mathbf{y}\left(j\right) - \mathbf{y}_{MIN}}{\mathbf{y}_{MIN}} \right] \right\}^{2} \\ & \Delta \mathbf{u}\left(i\right) = \frac{\mathbf{u}\left(i\right) - \mathbf{u}\left(i-1\right)}{\mathbf{u}\left(i-1\right)} \qquad \Delta \mathbf{u}_{MIN} \leq \Delta \mathbf{u}\left(i\right) \leq \Delta \mathbf{u}_{MAX} \\ & \mathbf{PF}_{u}\left(i\right) = \left\{ Max \left[\mathbf{0}, \frac{\mathbf{u}\left(i\right) - \mathbf{u}_{MAX}}{\mathbf{u}_{MAX}} \right] \right\}^{2} + \left\{ Min \left[\mathbf{0}, \frac{\mathbf{u}\left(i\right) - \mathbf{u}_{MIN}}{\mathbf{u}_{MIN}} \right] \right\}^{2} \\ & \delta \mathbf{u}_{T}\left(l\right) = \mathbf{u}\left(l\right) - \mathbf{u}_{T}\left(l\right) \\ & s.t. \left\{ \begin{array}{l} \mathbf{h}\left(\mathbf{y},\mathbf{u},\mathbf{d},t\right) = \mathbf{0} \\ \mathbf{f}\left(\mathbf{y}',\mathbf{y},\mathbf{u},\mathbf{d},t\right) = \mathbf{0} \end{array} \right\}$$

 $\min_{\mathbf{u}(k),\mathbf{u}(k+1),\ldots,\mathbf{u}(k+h_c-1)} \left\{ \ldots \right\}$

$$\min_{\mathbf{u}(k),\mathbf{u}(k+1),\dots,\mathbf{u}(k+h_{c}-1)} \left\{ \sum_{j=k+1}^{k+h_{p}} \left[\boldsymbol{\omega}_{y} \mathbf{e}_{y}^{2}(j) + \mathbf{PF}_{y}(j) \right] + \dots \right\}$$

$$\mathbf{e}_{y}(j) = \frac{\left[\mathbf{y}(j) + \mathbf{\delta}_{y}(k) \right] - \mathbf{y}_{sp}(j)}{\mathbf{y}_{sp}(j)} \qquad \mathbf{\delta}_{y}(k) = \mathbf{y}_{r}(k) - \mathbf{y}(k) = \mathbf{y}_{real}(k) - \mathbf{y}_{model}(k)$$

$$\mathbf{PF}_{y}(j) = \left\{ Max \left[\mathbf{0}, \frac{\mathbf{y}(j) - \mathbf{y}_{MAX}}{\mathbf{y}_{MAX}} \right] \right\}^{2} + \left\{ Min \left[\mathbf{0}, \frac{\mathbf{y}(j) - \mathbf{y}_{MIN}}{\mathbf{y}_{MIN}} \right] \right\}^{2}$$

$$\min_{\mathbf{u}(k),\mathbf{u}(k+1),\dots,\mathbf{u}(k+h_{c}-1)} \left\{ \dots + \sum_{i=k}^{k+h_{p}-1} \left[\boldsymbol{\omega}_{u} \Delta \mathbf{u}^{2}\left(i\right) + \mathbf{PF}_{u}\left(i\right) \right] + \dots \right\}$$

$$\Delta \mathbf{u}\left(i\right) = \frac{\mathbf{u}\left(i\right) - \mathbf{u}\left(i-1\right)}{\mathbf{u}\left(i-1\right)} \qquad \Delta \mathbf{u}_{MIN} \leq \Delta \mathbf{u}\left(i\right) \leq \Delta \mathbf{u}_{MAX}$$

$$\mathbf{PF}_{u}\left(i\right) = \left\{ Max \left[\mathbf{0}, \frac{\mathbf{u}\left(i\right) - \mathbf{u}_{MAX}}{\mathbf{u}_{MAX}} \right] \right\}^{2} + \left\{ Min \left[\mathbf{0}, \frac{\mathbf{u}\left(i\right) - \mathbf{u}_{MIN}}{\mathbf{u}_{MIN}} \right] \right\}^{2}$$

In general, $\Delta u_{_{MIN}}$ is negative

$$\min_{\mathbf{u}(k),\mathbf{u}(k+1),\ldots,\mathbf{u}(k+h_c-1)} \left\{ \ldots + \ldots + \sum_{l=k}^{k+h_p-1} \omega_T \delta \mathbf{u}_T^2 \left(l \right) \right\}$$
$$\delta \mathbf{u}_T \left(l \right) = \mathbf{u} \left(l \right) - \mathbf{u}_T \left(l \right)$$

T = target.

It can be the same optimal value of the steady state conditions for the manipulated variables (*e.g.*, nominal operating conditions).

$$\begin{split} \min_{\mathbf{u}(k),\mathbf{u}(k+h_{v}-1)} \left\{ \sum_{j=k+1}^{k+h_{p}} \left[\boldsymbol{\omega}_{y} \mathbf{e}_{y}^{2}\left(j\right) + \mathbf{PF}_{y}\left(j\right) \right] + \sum_{i=k}^{k+h_{p}-1} \left[\boldsymbol{\omega}_{u} \Delta \mathbf{u}^{2}\left(i\right) + \mathbf{PF}_{u}\left(i\right) \right] + \sum_{l=k}^{k+h_{p}-1} \boldsymbol{\omega}_{T} \delta \mathbf{u}_{T}^{2}\left(l\right) \right\} \\ \mathbf{e}_{y}\left(j\right) &= \left\{ \frac{\mathbf{y}\left(j\right) + \mathbf{\delta}_{y}\left(k\right) - \mathbf{y}_{sp}\left(j\right)}{\mathbf{y}_{sp}\left(j\right)} \qquad \mathbf{\delta}_{y}\left(k\right) = \mathbf{y}_{r}\left(k\right) - \mathbf{y}\left(k\right) = \mathbf{y}_{real}\left(k\right) - \mathbf{y}_{model}\left(k\right) \\ \mathbf{PF}_{y}\left(j\right) &= \left\{ Max \left[\mathbf{0}, \frac{\mathbf{y}\left(j\right) - \mathbf{y}_{MAX}}{\mathbf{y}_{MAX}} \right] \right\}^{2} + \left\{ Min \left[\mathbf{0}, \frac{\mathbf{y}\left(j\right) - \mathbf{y}_{MIN}}{\mathbf{y}_{MIN}} \right] \right\}^{2} \\ \Delta \mathbf{u}\left(i\right) &= \frac{\mathbf{u}\left(i\right) - \mathbf{u}\left(i-1\right)}{\mathbf{u}\left(i-1\right)} \qquad \Delta \mathbf{u}_{MIN} \leq \Delta \mathbf{u}\left(i\right) \leq \Delta \mathbf{u}_{MAX} \\ \mathbf{PF}_{u}\left(i\right) &= \left\{ Max \left[\mathbf{0}, \frac{\mathbf{u}\left(i\right) - \mathbf{u}_{MAX}}{\mathbf{u}_{MAX}} \right] \right\}^{2} + \left\{ Min \left[\mathbf{0}, \frac{\mathbf{u}\left(i\right) - \mathbf{u}_{MIN}}{\mathbf{u}_{MIN}} \right] \right\}^{2} \\ \delta \mathbf{u}_{T}\left(l\right) &= \mathbf{u}\left(l\right) - \mathbf{u}_{T}\left(l\right) \\ s.t. \left\{ \begin{array}{l} \mathbf{h}\left(\mathbf{y}, \mathbf{u}, \mathbf{d}, t\right) = \mathbf{0} \\ \mathbf{f}\left(\mathbf{y}', \mathbf{y}, \mathbf{u}, \mathbf{d}, t\right) = \mathbf{0} \end{array} \right\}$$

Critical elements of the MPC

$$h_{c}$$

$$h_{p}$$

$$\omega_{y}$$

$$\omega_{u}$$

$$\omega_{T}$$

$$\delta_{y}(k)$$

$$y = y_{model}$$

$$\Delta u$$

 u_T

References

- Eaton J. W., J. B. Rawlings, "Model-predictive control of chemical processes", Chem. Eng. Sci., 47, (1992)
- Thompson, G. L., S. P. Sethi, "Optimal Control Theory", Martinus Nijhoff Publishing, Boston, (1994)
- Morari, M. J. Lee, "Model predictive control. Past, present and future", Computers and Chemical Engineering, 23, 667-682 (1999)

