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• Industrial processes are characterized by the following control problems:

1. The process is almost usually multivariate

• several controlled variables: y1, y2,…, yn

• several manipulated variables: u1, u2,…, um

• several disturbance variables: d1, d2,…, dk

2. Complex dynamic behaviour:

• time delays due to the inertia of the system (either material or energetic), 

mass flow in the pipes, long measuring times

• Inverse response

• possible instability at open-loop

Introduction
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3. Intrinsic nonlinearity of the system

4. Operative constraints that are quite dissimilar and complex

• constraints on the input and output variables

• constraints on the changing rate of the input variables

• Constraints on the optimal value of the input variables (e.g., economic 

value)

• process and law constraints

• soft and hard constraints

Introduction
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An ideal control system should be:

• Multivariable and capable of managing:

• time delays, 

• inverse response,

• process and law constraints, 

• measurable and non-measurable disturbances

• Minimize the control effort

• Able of inferring the unmeasured/unmeasurable variables from the measured 

ones

• Robust respect to the modeling errors/simplifications and the noise of the 

measured variables

• Able to manage both the startups and shutdowns (either programmed or 

emergency) as well as the steady-state conditions

Model based control
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• The availability of dynamic numerical models of:

• chemical/industrial processes, 

• unit operations

• process units,

• plant subsections

• …

allows forecasting the response of the simulated plant/process to possible 

disturbances and manipulated variables.

• The availability of such dynamic numerical models paves the way to the so-called: 

model based control.

• The model of the process can be used to forecast the system response to a set of 

control actions originated by modifying a suitable set of manipulated variables.

Model based control
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• We are going to answer the following question:

What is the response of the system to a modification of the manipulated 

variables?

• More specifically, we can imagine to deploy an optimizing procedure that looks for 

the best response of the system subject to the manipulation of the process variables.

• According to the most simplified approach, we have:

• the control specifications, i.e. the setpoint

• the objective function that measures the distance of the controlled variable 

from the setpoint

• the dynamic model of the system usually

described by a DAE system, which plays

the role of the equality constraints

• the manipulated variables that are the

degrees of freedom of the optimization

problem

Model based control
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ysp = y set point (setpoint trajectory)

y = y model response

yr = y real, measured response

u = manipulated variable

y(k-1)

y(k)
y(k+1)

u(k)

FuturePast

k k+1 k+2 k+3 k+4 k+5 …

Time horizon

yr(k-1)

yr(k)

ysp(k-1)

ysp(k)

ysp(k+1)

Model predictive control
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• The system follows a specified trajectory  optimal setpoint trajectory, ysp

• The model is called to produce a prediction, y, of the real response of the system.

• We have:

• response in the future: y(k+1), y(k+2), y(k+3), …

• respect to past real inputs: u(k), u(k-1), u(k-2), …

• respect to future manipulated inputs: u(k+1), u(k+2), …

• The numerical model of the process to be controlled is used to evaluate a sequence 

of control actions that optimize an objective function to: 

• Minimize the system response y respect to the optimal set-point trajectory, ysp

• Minimize the control effort

MPC features
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• Since the model is a simplified representation of the real system, it is intrinsically not 

perfect. This means that there is a discrepancy between the real system and the 

modeled one.

• The present error ek between the real system and the model is:

• This error is kept constant and it is used for future forecasts. 

   k ry k y ke  -

MPC features
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