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Model identification

In defining a black-box model, the output data (y) of the system are calculated from

the input data (u) and from the past history (y,4, U,4):
y=f (yold  Uoig )

In general, in order to have a model as close as possible to the real system some

adaptive parameters (p) are introduced:
y=f (yold » Uoi » p)

It is also possible to introduce in the model the error (e) that is defined as y,-y:

y = f (yold ’ uoId ’eold ! p)
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Model identification

The system to be identified has the following structure:
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Model identification

The function f, by means of the parameters p, maps the vector of the regressors in

the output variables y:

y(t)=Fo(t).p]

y(t)jJ)K

Row vector Column vector

The simplest function fis:

Mathematical models may have scalar, vector or mixed structure:

e  SISO: Single Input — Single Output
e  MISO: Multiple Input — Single Output
e  MIMO: Multiple Input — Multiple Output
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Identification procedure

1. Determination of the system limits and necessary variables
2. Design of experiments

3. Selection of the model structure

4. Parameters evaluation

5. Simulation and validation
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Identification procedure

1. Definition of the system limits and necessary variables
=  The exact number of input (u) and output (y) variables is defined.

=  The variability range of the variables is identified to create a sutiable sampling

domain for the next identification step.
2. Design of experiments

. Once the variables are identified, the sampling frequency is assigned

= All the input variables must be disturbed
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Identification procedure

3. Selection of the model structure

. We have to define:
. The length of the regressors vector (see the following point)
. The order of the model respect to every variable

. The linearity or non-linearity respect to the regressors and the parameters

4. Parameters evaluation
. We have to choose the numerical algorithm for the evaluation of the model
parameters
. The models may be classified as:
. Deterministic (error minimization)

. Stochastic (maximum likelihood method)
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Identification procedure

5. Simulation and validation

=  Once the model is identified, it is required to test its predictive capability and

its goodness by using a set of not formerly used data

=  The validation procedure is based of a validation data set (cross-validation

set), properly chosen a priori and kept separated from the learning set
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Disturbance sequence generation

e The input-output data collection for the identification and validation procedures is

obtained by disturbing the process input variables.

e The PRBS (Pseudo Random Binary Sequence) method is used:

= Two bounds are chosen, uMIN, uMAX, for the variability range of the disturbed

variable u

= The variable quantity is varied randomly. The variable can assume only the

bound values (i.e. uMIN and uMAX)

= The corresponding output vector is measured
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PRBS sequences

1. Input variables can assume only two values, equal in amplitude but with opposite

sign, =Au, respect to the stationary conditions

2. The shift from the positive condition to the negative one, and vice-versa, is made
randomly in order to give the sequence a kind of white noise behaviour (i.e. null

average)

3. The disturbance on the input variables is made every n sampling times (t, = sampling

time)

4. Usually the range of nxt, is equal to the 20% of the time needed by the system to

end its transient

5. The amplitude of the disturbance Au should be high enough to eliminate the

measurement error due to the system noise
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Disturbance sequences generation
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Data pre-processing

e At the stage of field data collection it is possible to apply some appropriate
mathematical operators able to damp the excessive oscillations (the moving

average for example)

e I|tis possible to apply some high-cut, low-cut filters in order to remove sudden

variations beyond the normal operating intervals

e I|tis possible to remove the so called outliers by means of appropriate techniques of

statistical analysis

e DETREND: the average value is subtracted to the sampled data. By doing so, the
sampled variables express the deviation from either the stationary conditions or the
mean operating conditions. As a consequence, it is also possible to use the model

(at the cost of lower quality results) even for other steady state conditions.
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ARX models

Features
> The ARX model is linear both in the regressors and in the parameters
> As such, it is not able to describe different steady states
> By definition it cannot describe non-linear behaviours
> Its identification is quite simple

> The computational time for one prediction is extremely low
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ARX — SISO models

SISO models:

y(t)+a y(t-1)+a, y(t-2)+...+a, y(t—nny):
=bu(t-1)+b,u(t-2)+...+b u(t—n,)

In order to make a prediction, n, values of the dependent variable (y) and n,,

values of the independent variable (u) are needed.

Example: evaluation based on 3 previous times for both the independent and

dependent variables

y(t)+a y(t-1)+a, y(t—-2)+a, y(t-3) =
=bu(t-1)+b,u(t—2)+byu(t—3)
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ARX — MIMO models

MIMO models:

Example: system characterized by:
e 3 independent variables (u)
e 2 dependent variables (y)

e 4 previous times

y(t)+ay, (t-1)+a,y, (t-2)+a,y, (t-3)+a,y, (t—4)+
+ay, (t-1)+ay, (t-2)+a,y, (t-3)+a.y, (t—4)
=hu, (t-1)+b,u, (t-2)+b,u, (t-3)+b,u, (t-4)+
+hyu, (t—1)+byu, (t—2)+byu, (t—3)+byu, (t—4)+
+byu, (t=1)+bygu, (t—2)+by,u, (t-3) +by,u, (t-4)

‘ 8 + 12 = 20 parameters
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Parameters determination (SISO)

Given the following measurements on
the real system

Different sets of parameters
can be derived

(p:[y(t—l) y(t-2) ... y(t—ny)

u(t-1) u(t-2) ... u(t-n,)]

y(t)=pxe(t)
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Parameter determination

Searching for the best parameters set, an objective function should be optimized

—> Least squares method

fobj = mgn ii[yireal (t)_ yiARX (t)]z

=1 t=1
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Parameters determination

> "

]

Dependent variables ARX ( ) ( )
calculation y p x@
Objective funcjclon value £~ min Z[ s ) )]2

calculation ) e

p™™ l’ foo — Tay | <&

——

opt

p

© Davide Manca — Dynamics and Control of Chemical Processes — Master Degree in ChemEng — Politecnico di Milano SE5—18



Practical

e Consider two interacting tanks

e Find the parameters of an ARX model considering that the independent variable is

the inlet flowrate and the dependent variable is the level of the second tank

e |n order to compute the dependent variable at time t, consider 2 old values for both

the independent and the dependent variables

e Consider that the independent variable oscillates around the steady state value

(which is assigned) of £10%
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System model

A
F ( —
Ai % — Fi . hl h2
dt I,
n F <
Az % _ hl - hz . hz
- dt I, I,
Data: F =10 m’/s I.C.: h(0)=h"
Tank 1: Tank 2: h, (O) _ héS)

A =40 m? A, =30 m’
=09 s/m?*| r,=21s/m’
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Solution procedure

1. Determine the steady state conditions

d h,
Ai dl::l 0= k- hl (s) _
, h=(rn+r)F
< —
AT _o M-l B Y = 1.,
| dt I, r,

2. Give a disturbance to the system in order to assess the characteristic time

(for example +10% F))

3. Evaluate the system dynamics according to the PRBS method
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Characteristic time assessment

Step disturbance on the inlet stream (+10%)
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Determination of the times

e Interval between two disturbances( td ):

t, =0.27=150s

e Sampling time ( ts ):

t. =t,/3=50s
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MatLab implementation

for i = 1:nSteps
cont = cont + 1;
if (cont == 3)
randNum = rand() ;
if (randNum <= 0.5)
Fi = Fi0 * 1.1;
else
Fi = Fi0O * 0.9;
end
cont = 0;
end
system dynamics evaluation

end
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Disturbance sequence
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Real system response

0.1

- 0.05- * +

Liquid Ie\_/el [-]

-0.05- +

0.1 1000 2000 3000 4000

Time [s]

Davide Manca — Dynamics and Control of Chemical Processes — Master Degree in ChemEng — Politecnico di Milano SE5—26



ARX performance assessment

Comparison of the ARX model with the original identification data
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ARX validation

Validation
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