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Introduction

ω The mathematical model of a process unit or of a whole process is of paramount 

importance for engineering applications.

ω The numerical model of a process can be applied to chemistry, electronics, 

ƳŜŎƘŀƴƛŎǎΣ ŜŎƻƴƻƳƛŎǎΣ Χ

ω A model can be used to find quantitative answers

without measuring real processes or making experiments.

ω Another important feature consists in the capability of

predicting the future response of the

system Ąmodel-based multivariable control; 

process optimization.
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Some questions

ω How can we build a mathematical model for prediction purposes?

ω How to use the experimental data (if available) for the model synthesis?

ω How to assess the reliability and consistency of the model?

ω The mathematical models can be classified into two classes:

Á Basic models;

Á Empirical models.

ω BASIC MODELS: they are based on an in-depth knowledge of the physical features of 

the system. Conservation laws: mass, energy, momentum. First-principle models. 

Deterministic models.

ω EMPIRICAL MODELS: the process is not described by any physical laws. Conversely, it 

is defined by means of quantitative observations, experiments, and measures.
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Black -box models

ω A black-box model is completely independent from

the physics of the process to be identified.

ω Theoretically, it is possible to build (i.e. identify) a 

black-box model without knowing anything of

the process to be modeled.

ω Obviously, an in-depth knowledgeof the process

allows increasing the quality of the identified model.

ω Usually, it is necessary to find a balance

between the prediction quality

of the model and its complexity.
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When is the identification recommended?

ω If one is ignorantabout the process to be modeled;

ω If the complexityof the process to be modeled is high;

ω If we need fast solutions:

Á to carry out the model;

Á in the simulation of the model, i.e.CPU time.

ω If we need a model that does not produce

mathematical errors (floating point exceptions).
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Signals and systems

ω It is worth introducing the concepts of signal and system

according to the nomenclature introduced by Bosh e Klaw, 1994.

ω SIGNAL

Á It is something holding/bearing information.

Á Deterministicsignals: they are completely defined

for instance by a mathematical expression;

Á Stochasticsignals: the exact future value of the signal cannot be predicted. The 

signal is described by a statistical approach, for instance in terms of mean value 

and standard deviation.

Á A signal may be continuous or discrete.
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ω SYSTEM

Á It is a set of relationships between variables and signals.

Á The system is an ideal representation of the real process.

ω STATE-SPACE MODELS

Á The state of a dynamic system contains the whole past history of the process;

Á Therefore, it is possible to predict the future behaviour of the system without 

having to know the past history of the process.

Á Mathematically, this means that the system features a number of state 

variables, xi, that contribute to its dynamic description by means of a system of 

n differential equations of the first order.

Á nƛǎ ǘƘŜ άƻǊŘŜǊ ƻŦ ǘƘŜ ǎȅǎǘŜƳέΦ

Signals and systems
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ω STATE-SPACE MODELS

Á Besides the state variables, there are the input variables, ui, which are the so 

ŎŀƭƭŜŘ άŘǊƛǾƛƴƎ ŦƻǊŎŜǎέ ƻŦ ǘƘŜ ǎȅǎǘŜƳΦ

Á The solution of the system of n differential equations provides the whole picture 

of the future behaviour of the system.

Á To know the xi values may be of reduced interest as the state variables are not 

necessarily observable.

Á The most interesting variables, yi, are the output variablesthat depend on the xi

and ui variables.

Á The deterministicand continuous formulation of a state-spacesystem is:

() () ()( )

() () ()( )
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,
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Signals and systems
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ω STATE-SPACE MODELS

Á The deterministicand discreteof a 

state-spacesystem is:

ω BLACK-BOX MODELS

Á As aforementioned, the black-box models exchange information with the 

observeronly by means of signals. Therefore, the observercannot know the g

and h functions that rule/characterize the system.

Á Given a black-box model, the only pieces of information available to the 

observer are the input and output signals. Consequently, the state variables, x, 

are unknown.

Á A black-box model does not use any state variables.

( ) () ()( )

() () ()( )

1 ,

,

t t t

t t t

+ =

=

x g x u

y h x u

Signals and systems
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Black -box models

ω A black-box model is characterized by the following mathematical formulation:

ω If the model is dynamic then the system output depends on the past history of the 

inputs and outputs:

ω In order to successfully carry out the identification procedure of the functional 

dependency, f, it is worth introducing some adaptive parameters, p.

( )system output system input=f ()=y f u

( )present outputs past outputs, past inputs=f ( ),now old old=y f y u

( )present outputs past outputs, past inputs, parameters=f ( ), ,now old old=y f y u p
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ω The p parameters may be used as independent variables of the identification 

procedure (i.e.degrees of freedom) with the objectivethat the black-box model 

describes in the best way the input-output data coming from the real process.

ω A possible improvement of the black-box model, f, consists in accounting for the 

error, e, which measures the distance of the identified system from the real process.

past outputs, past inputs, 
present outputs

past errors, parameters

å õ
=æ ö
ç ÷

f ( ), , ,now old old old=y f y u e p

inputs outputs

disturbances

Black -box models
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System identification

ω The system identification calls for three steps:

1. Selectionof the set of inputs, u, outputs, y, errors, e, in terms of number of 

unknowns and length of the time interval;

2. Selection of the regressor, f;

3. Model identification in terms of model regression respect to the observations. 

This is done by means of suitable parameters that play the role of independent 

variables (i.e. degrees of freedom).
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Regressors

ω In general, a model has not to necessarily consider all the observable/measurable 

inputs and outputs of the process.

ω In case of a system to be used for control purposes may be suitable to consider just 

the controlled, manipulatedvariables and possibly the measurable disturbances.

ω Usually, we have:

Á r output variables, y;

Á m input variables, u.

ω The error vector is:

ω The r + mvariables of the model are sampled (i.e. measured and stored) every 

sampling time, ts. 

ω These variables describe the system history (and take into account the 

attenuation/fading effect of the signal with time).

real= -e y y
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ω The system to be identified has the following formulation:

ω We introduce the jvector whose components are called regressors:

ω If d is the total number of system variables, then the length ôf the jvector is the 

total order of the model:
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ω It is worth considering that the inputs may have a delayed effect on the outputs. This 

can be accounted for by introducing the so-called time delays, nki, in the system 

model for each m input:

() ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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r
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r
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Regressors
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Function f

ω The f function, through the p parameters, mapsthe

regressors vector into the y variables:

ω We can have either linear or non-linear mapping regressors (i.e. functions).

ω The simplest model for the f function is:

ω Likewise, if p is a matrix then y is a vector.

ω If we hypothesize that the output vector, y, is the sum of two terms referred to a 

deterministic contribution(not disturbed) rand a disturbance contributionw, we 

have:

() (),t t= è øê úy f pj

() ()y t t= ³p j

() () ()t t t= +y r w

N.B.: p is  a row vector whilst jis a column vector.
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ω In the formulation                                    the wterm represents the contribution to the 

output variable, y, which cannot be deterministically modelled.

ω wproduces a stochastic effect on the system. w is the noise and/or the system 

deviation from the ideal linearity.

ω The deterministic contribution to the model can be expresses as follows:

Á where G is a rational transfer function matrix in the translation operatorq:

Á The plain representation of the problem is:

() () ()t t t= +y r w

() ( )(),t q t=G p ur

( )
()

()

1

1 2

1

1

,
1
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q q q r
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= =
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G p

A a a

() ( ) ( ) ( ) ( )1 11
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Time delay

Function f
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ω Likewise, it is possible to model the disturbance contribution:

Á where H is a rational transfer function matrix in the translation operator q:

Á The plain representation of the problem is:

ω Eventually, the general formulation of the problem becomes:

() ( )(),t q t=H p ew

( )
()
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1 2

1 2
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ω It is worth observing that the Box-Jenkins formulation depends on 5 structural 

parameters:

ω and on 4 adaptive parameters:

ω A simplification of the Box-Jenkins model can be obtained by imposing that:

ω The model becomes:

ω The ARMAXacronym derives from:

Á AUTOREGRESSIVE

Á MOVINGAVERAGE

Á EXOGENOUS INPUT

            u e kw rn n n n n

         a b c d

() ()q q=A C

()() ()() ()()q t q t q t= +A y B u D e ARMAX model

()()q tA y

()()q tD e

()()q tB u
¢Ƙƛǎ ƛǎ ŀƴ άŜȄǘǊŀ ƛƴǇǳǘέ ǘƘŀǘ ƛƴ ŜŎƻƴƻƳƛŎ 

ǘŜǊƳǎ ƛǎ ŘŜŦƛƴŜŘ ŀǎ ά9ȄƻƎŜƴƻǳǎ LƴǇǳǘέ

Function f
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Regressors

ω The regressors vector in case of ARMAXmodels is:

ω If we remove the moving average term we get the ARXmodel:

ω Eventually, if we set ny = 0 in the ARX model we get a FIR(Finite Impulse Response) 

model:

() ( ) ( ) ( ) ( ) ( ) ( )[ 1 , , ;  1 , , ;  1 , , ]ARMAX y k k u et t t t t t t= - - - - - - - -y y n u n u n n e e nj

() ( ) ( ) ( ) ( )[ 1 , , ;  1 , , ]ARX y k k ut t t t t= - - - - - -y y n u n u n nj

() ( ) ( )[ 1 , , ]FIR k k ut t t= - - - -u n u n nj
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Identification models
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ARX models

ω The mathematical models presented so far may have a scalar, vector, or mixed 

structure:

Á SISO: SingleInputςSingleOutput

Á MISO: Multiple Input ςSingle Output

Á MIMO: Multiple Input ςMultiple Output

ω FEATURES

Á The ARX model is linear both in the regressorsand parameters.

Á As such, it cannot describe multiple steady states;

Á By definition, it can not describe non-linear dynamics;

Á Its identification is rather simple;

Á The CPU timefor a model prediction is moderate.

ω Example of an ARX SISO

() ( ) ( ) ( ) ( ) ( ) ( )1 2 1 21 2 1 2
y un y n uy t a y t a y t a y t n bu t b u t b u t n+ - + - + + - = - + - + + -
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ARMAX models

ω FEATURES

Á An ARMAX model is linear in the input, output, and error variables.

Á The prediction capability of ARMAX models is better than the ARX ones thanks 

to the presence of the error terms, e;

Á The error term can, somehow, account for:

Å Process non-linearity;

Å Unmeasured disturbances;

Å Measures noise.

Á It cannot account for multiple steady states;

Á The model outputs are evaluated with the scalar product

between the regressors vector and the parameters one;

Á The ARMAX model is not linear in the regression parameters.

() ( ),y t t= ³p pj
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ARMAX models

ω FEATURES

Á The evaluation of the model parameters, p, calls for a non-linear regression 

procedure Ą higher CPU time.

Á The CPU time for a prediction is higher than that of an ARX one.

Á The presence of the error term                       calls for the in-the-field 

measurement of the real output variables. As such, an ARMAX model is not 

recommended/suitable for the prediction on n steps forward.

ω Example of an ARMAX SISO

() ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1 2

1 2

1 2 1 2

                                                                             1 2

y u

e

n y n u

n e

y t a y t a y t a y t n bu t b u t b u t n

d e t d e t d e t n

+ - + - + + - = - + - + + - +

- + - + + -

real= -e y y
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Non -linear models

ω Going on with the concept of function f interpreted as the

mapof the regressors vector jin the output

variables y through the parameters p:

we can implement/adopt any non-linear f function.

ω Usually, it is worth adopting the expansion of a base function

such that: 

ω One of the most used forms is the polynomial expansion of the regressor elements:

N.B.: this expansion is linear in the parameterbut is non-linear in the Nregressors.

() (),t t= è øê úy f pj

()( )kf tj

() ()( ), k kk
t p f t=è øê úäf pj j

()
1 1 1

N N N N N N

k k k k l k k l m

k k l k k l k m l

t a j b jj g jjj
= = ² = ² ²

= + + +ä ää äääy


