

Dynamics of forced and unsteady-state processes

Davide Manca

Lesson 3 of "Dynamics and Control of Chemical Processes" – Master Degree in Chemical Engineering

Forced unsteady-state reactors

- Forced unsteady state (FUS) reactors allow reaching higher conversions than conventional reactors.
- Two alternatives:
 - Reverse flow reactors, RFR;
 - Network of reactors: simulated moving bed reactors, **SMBR**.
- Within a **SMBR** network, the simulated moving bed is accomplished by periodically switching the feed inlet from one reactor to the following one.
- **APPLICATION**: Methanol synthesis (ICI patent).
 - Operating temperature: 220-300 °C;
 - Pressure: 5-8 MPa;
 - CO = 10-20%; CO₂ = 6-10%; H₂ = 70-80%.



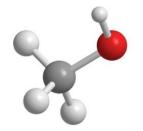
Forced unsteady-state reactors

- Catalytic exothermic reactions can be carried out with an autothermal regime.
- FUS reactors are mainly advantageous when either the reactants concentration or the reactions exothermicity are low.
- There is an increase of both conversion and productivity that allows:
 - Using smaller reactors,
 - Lower amounts of catalyst.

Methanol synthesis in forced unsteady-state reactors

• The methanol synthesis reaction is:

 $CO + 2H_2 \rightleftharpoons CH_3OH \quad \Delta \tilde{H}_R = -90.769 \text{ kJ/mol}$

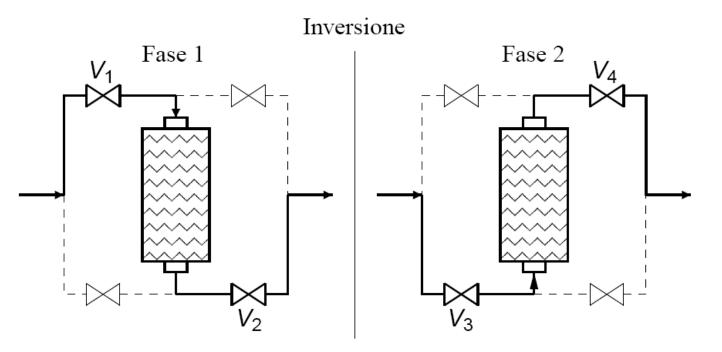


- The reaction takes place with a reduction of the moles number. Therefore, the reaction is carried out at high pressure.
- In the past, the methanol plants worked at 100 ÷ 600 bar.
- Nowadays, methanol plants work at lower pressures (50 80 bar).
- In the low-pressure plants, the following reactions are important too:

 $CO_2 + H_2 \rightleftharpoons CO + H_2O$ $CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$

Reverse Flow Reactors

• Valves: V_1 , V_2 , V_3 , V_4 allow periodically inverting the feed direction in the reactor.



RFR: first-principles model

Equations	#Eq.	Eq. type	Variables	
Gas phase enthalpic balance	1	Partial derivative	$T_G, T_S, \underbrace{y_{G,i}}_{i=1n\text{Comp}}$	
Solid phase enthalpic balance (catalyst)	1	Partial derivative	$T_G, T_S, \underbrace{y_{G,i}}_{i=1n\text{Comp}}, \underbrace{y_{S,i}}_{i=1n\text{Comp}}$	
Gas phase material balance	nComp	Partial derivative	$T_G, T_S, \underbrace{y_{G,i}}_{i=1n\text{Comp}}, \underbrace{y_{S,i}}_{i=1n\text{Comp}}$	
Solid phase material balance (catalyst)	nComp	Non-linear algebraic	$T_G, T_S, \underbrace{y_{G,i}}_{i=1n\text{Comp}}, \underbrace{y_{S,i}}_{i=1n\text{Comp}}$	
	2nComp+2		2nComp+2	

RFR: methanol synthesis

Reactor diameter	D _R	0.1	[m]
Reactor length	L	0.5	[m]
Void fraction	ε	0.4	[-]
Catalyst mass	W	41.2	[kg]
Apparent catalyst density	ρs	1750	[kg/m ³]
Catalyst porosity	εs	0.5	[-]
Pellet diameter	dp	0.0054	[m]
Inlet temperature	T _{in}	373.15	[K]
Working pressure	P	5	[MPa]
Surface flowrate	F _{in}	32.65	[mol/m²/s]

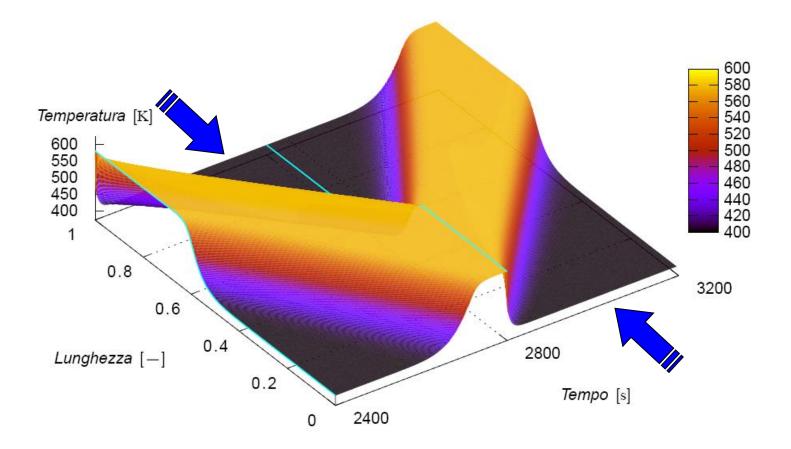
RFR: methanol synthesis

Specie nel gas in ingresso	Frazione molare	
CO	0.045	
CO ₂	0.02	
H_2	0.935	

Tipologia catalizzatore	$Cu/Zn/Al_2O_3$ oppure $Cu/Zn/Cr_2O_3$		
Contenuto di CuO	$50\% \div 70\%$		
Contenuto di ZnO	$20\% \div 30\%$		
Durata	circa 2 anni		
Cause disattivazione	presenza di zolfo		
Cause disallivazione	sinterizzazione Cu ($T > 573$ K)		

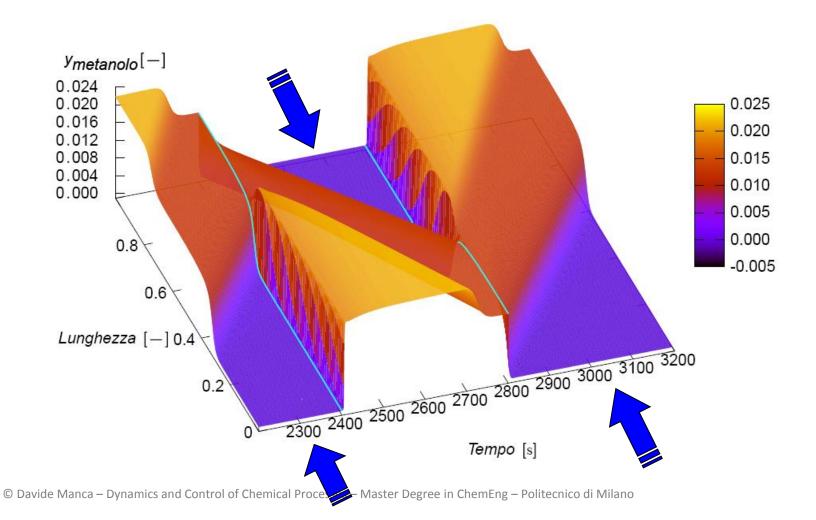
Reverse Flow Reactors

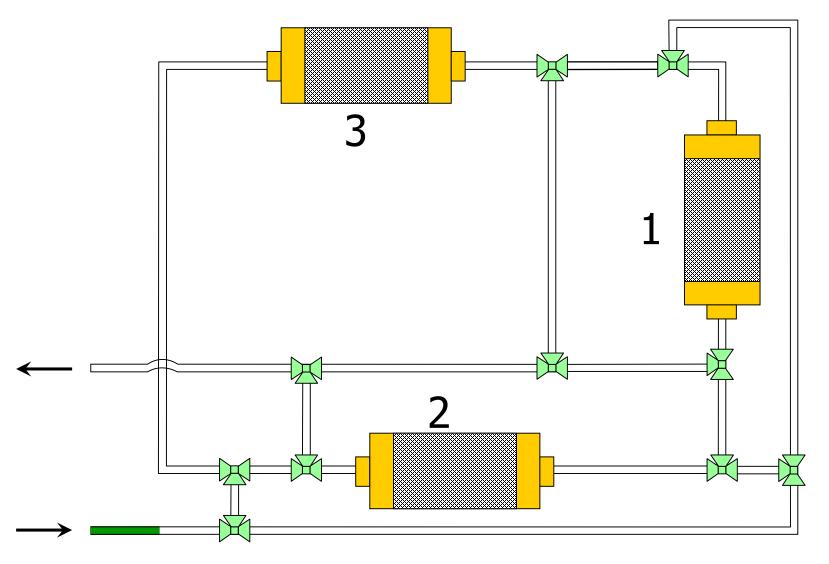
Temperature profile once the pseudo-stationary condition is reached



Reverse Flow Reactors

Concentration profile once the pseudo-stationary condition is reached





• Continuity equation for the gas phase:

$$\frac{\partial c_{\rm G}}{\partial t} + \frac{\partial}{\partial x} c_{\rm G} v = \sum_{i=1}^{n_{\rm r}} \frac{k_{{\rm G},i} a_v}{\varepsilon} (y_{{\rm S},i} - y_{{\rm G},i}).$$
(1)

• Continuity equation for component *j* in the gas phase:

$$\frac{\partial y_{G,j}}{\partial t} = D_{\text{eff}} \frac{\partial^2 y_{G,j}}{\partial x^2} - v \frac{\partial y_{G,j}}{\partial x} + \frac{k_{G,j}a_v}{c_G\varepsilon}(y_{S,j} - y_{G,j})$$
$$-y_{G,j} \sum_{i=1}^{n_r} \frac{k_{G,i}a_v}{c_G\varepsilon}(y_{S,i} - y_{G,i})$$
$$\text{with } j = 1, \dots, (n_r - 1).$$
(2)

• Energy balance for the gas phase:

$$\frac{\partial T_{\rm G}}{\partial t} = \frac{k_{\rm eff}}{\rho \hat{c}_{P,G}} \frac{\partial^2 T_G}{\partial x^2} - v \frac{\partial T_{\rm G}}{\partial x} + \frac{h a_v}{\rho \hat{c}_{\rm P,G} \varepsilon} (T_{\rm S} - T_{\rm G}).$$
(3)

• Mass balance for the solid phase:

$$k_{G,j}a_{\nu}(y_{S,j} - y_{G,j}) = \left[\varrho_{S}(1 - \varepsilon)\right] \sum_{k=1}^{N_{R}} \eta_{k} \nu_{j,k} R'_{k}$$

with $j = 1, ..., n_{r}$. (4)

• Energy balance for the solid phase:

$$\frac{\partial T_{\rm S}}{\partial t} = \frac{\lambda_{\rm S}}{\varrho_{\rm S} \hat{c}_{P,S}} \frac{\partial^2 T_{\rm S}}{\partial x^2} - \frac{h a_{\nu}}{\varrho_{\rm S} \hat{c}_{P,S} (1-\varepsilon)} (T_{\rm S} - T_{\rm G}) + \frac{1}{\hat{c}_{P,S}} \sum_{i=1}^{n_{\rm r}} \left(\sum_{k=1}^{N_{\rm R}} \eta_k \nu_{i,k} R'_k \right) (-\Delta \tilde{H}_{{\rm f},i}).$$
(5)

• Kinetic equations corresponding to a dual-site Langmuir-Hinshelwood mechanism, based on three independent reactions: methanol formation from CO, water-gas-shift reaction and methanol formation from CO2:

$$CO + 2H_2 \rightleftharpoons CH_3OH,$$
 (6)

$$CO_2 + H_2 \rightleftharpoons CO + H_2O,$$
 (7)

$$CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O.$$
 (8)

• Reaction rates for a catalyst based on Cu-Zn-Al mixed oxides

$$R'_{\rm CH_3OH,A} = \frac{k'_{\rm ps,A}K_{\rm CO}\left[p_{\rm CO}p_{\rm H_2}^{3/2} - \frac{p_{\rm CH_3OH}}{p_{\rm H_2}^{1/2}K_{\rm p,A}}\right]}{(1 + K_{\rm CO}p_{\rm CO} + K_{\rm CO_2}p_{\rm CO_2})[p_{\rm H_2}^{1/2} + (K_{\rm H_2O}/K_{\rm H_2}^{1/2})p_{\rm H_2O}]},$$

$$R'_{\rm H_2O,B} = \frac{k'_{\rm ps,B}K_{\rm CO_2}\left[p_{\rm CO_2}p_{\rm H_2} - \frac{p_{\rm H_2O}p_{\rm CO}}{K_{\rm p,B}}\right]}{(1 + K_{\rm CO}p_{\rm CO} + K_{\rm CO_2}p_{\rm CO_2})[p_{\rm H_2}^{1/2} + (K_{\rm H_2O}/K_{\rm H_2}^{1/2})p_{\rm H_2O}]},$$

$$(10)$$

$$R'_{\rm CH_3OH,C} = R'_{\rm H_2O,C} = \frac{k'_{\rm ps,C}K_{\rm CO_2}\left[p_{\rm CO_2}p_{\rm H_2}^{3/2} - \frac{p_{\rm CH_3OH}p_{\rm H_2O}}{(p_{\rm H_2}^{3/2} - p_{\rm CO_2}^{2/2})[p_{\rm H_2}^{1/2} + (K_{\rm H_2O}/K_{\rm H_2}^{1/2})p_{\rm H_2O}]}{(1 + K_{\rm CO}p_{\rm CO} + K_{\rm CO_2}p_{\rm CO_2})[p_{\rm H_2}^{1/2} + (K_{\rm H_2O}/K_{\rm H_2}^{1/2})p_{\rm H_2O}]}.$$

$$(11)$$

Concerning the gas-solid heat transfer coefficient, the following correlation has been adopted:

$$\frac{hd_{\rm P}}{\lambda_G} = 1.6(2 + FRe_{\rm P}^{0.5}Pr^{1/3})$$
(12)

with

$$F = 0.664 \sqrt{1 + \left[\frac{0.0557Re_{\rm p}^{0.3}Pr^{2/3}}{1 + 2.44(Pr^{2/3} - 1)Re_{\rm p}^{-0.1}}\right]^2}$$
(13)

The prediction of the axial heat dispersion coefficient has been carried out adopting a correlation by Dixon and Cresswell [15]:

$$\frac{k_{\rm eff}}{\rho v \hat{c}_{P,G} d_{\rm P}} = \frac{0.73 + (\lambda_{\rm st}/\lambda_{\rm G})}{R e_{\rm P} P r} + \frac{0.5}{1 + 9.7 (R e_{\rm P} P r)}, \qquad (14)$$

where the term λ_{st}/λ_G accounts for the stagnant zone contribution. According to Edwards and Richardson [16] a correlation of the same general form as Eq. (14) can be used for the prediction of mass dispersion coefficient:

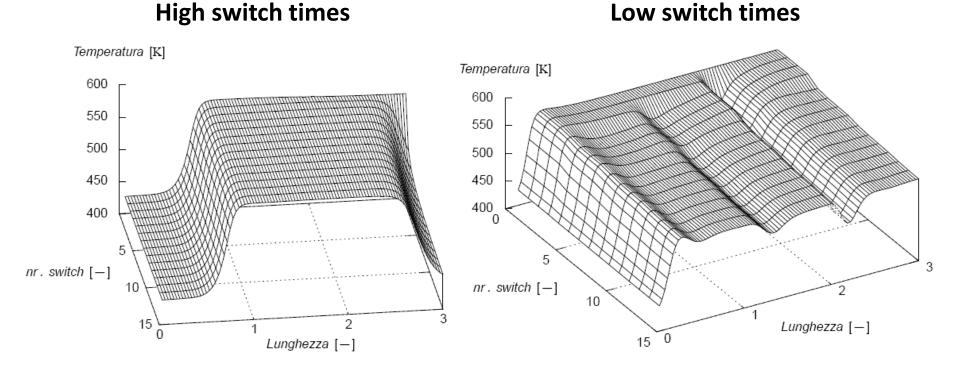
$$\frac{D_{\rm eff}}{vd_{\rm P}} = \frac{0.73}{Re_{\rm P}Sc} + \frac{0.5}{1 + 9.7/(Re_{\rm P}Sc)}.$$
(15)

Conventional Danckwerts boundary conditions are assumed at the inlet section of the network. The continuity of the gas temperature and concentration profiles has been imposed between each reactor of the sequence, at sections $x = \ell$ and 2ℓ . In addition, spatial derivatives should vanish at the outlet sections. At time t = 0 the reactants concentration is null, while the initial temperatures of the gas and solid phases are the same. When the switching time is reached the origin of the *x*-axis moves from the first reactor of the sequence to the second one and the switching conditions are applied in order to simulate the change of the inlet position:

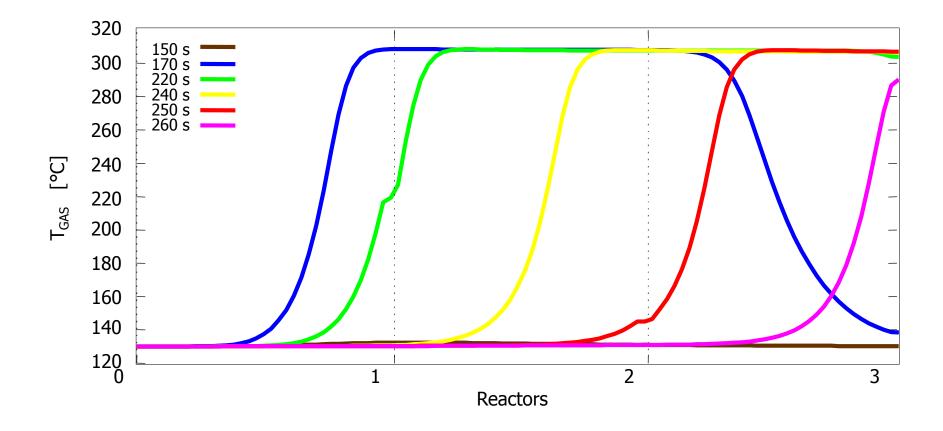
$$x \in]0, 2\ell[\begin{cases} y_{G,j}(x)|_{t^{+}} = y_{G,j}(x+\ell)|_{t^{-}} \\ T_{G}(x)|_{t^{+}} = T_{G}(x+\ell)|_{t^{-}} \\ T_{S}(x)|_{t^{+}} = T_{S}(x+\ell)|_{t^{-}} \end{cases}$$

$$x \in [2\ell, 3\ell] \begin{cases} y_{G,j}(x)|_{t^{+}} = y_{G,j}(x-2\ell)|_{t^{-}} \\ T_{G}(x)|_{t^{+}} = T_{G}(x-2\ell)|_{t^{-}} \\ T_{S}(x)|_{t^{+}} = T_{S}(x-2\ell)|_{t^{-}} \end{cases}$$
(16)

• After a suitable number of switches the temperature profile reaches a **pseudo**-**stationary** condition.



SMBR: the thermal wave



SMBR: open loop response

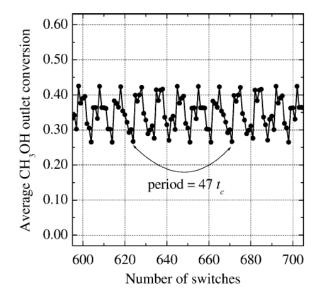


Fig. 5. Periodic evolution of the average methanol outlet conversion in the complex behaviour region; $t_c = 20 \text{ s}$, $T_{\text{in}} = 100 \text{ }^{\circ}\text{C}$.

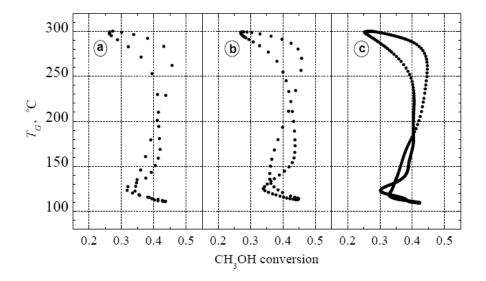


Fig. 6. Correlation between methanol conversion and the outlet gas temperature for different switching times. (a) Period = $47t_c$, $t_c = 20$ s; (b) period = $72t_c$, $t_c = 22$ s; (c) period = $332 t_c$, $t_c = 24$ s. Points are taken in the middle of each cycle.

SMBR: open loop response

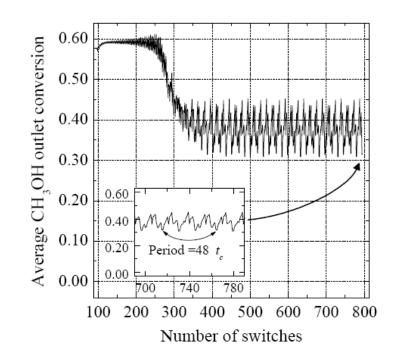
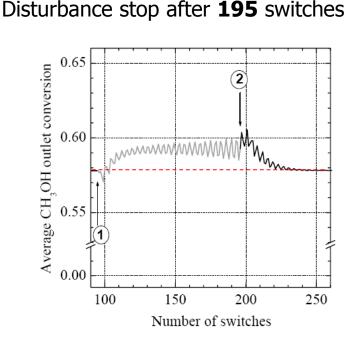


Fig. 7. Open loop response to a step disturbance $\Delta T_{G,in} = -10$ °C and transition to a multi-periodic steady-state; $t_c = 40$ s, $T_{in} = 130$ °C.

SMBR: open loop response



Disturbance stop after **310** switches

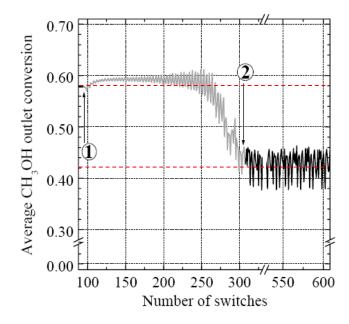


Fig. 8. Open loop response to a step disturbance $\Delta T_{G,in} = -10 \degree C$ (point 1) and restoration of the previous steady-state after the disturbance (point 2); $t_c = 40 \text{ s}$, $T_{in} = 130 \degree C$.

Fig. 9. Open loop response to a step disturbance $\Delta T_{G,in} = -10 \,^{\circ}\text{C}$ (point 1) and new complex steady-state obtained when the conditions before the disturbance are restored (point 2); $t_c = 40 \,\text{s}$, $T_{in} = 130 \,^{\circ}\text{C}$.

There are more periodic stationary conditions

The control problem

• FEATURES

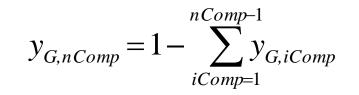
- The system may suddenly diverge to unstable operating conditions (even chaotic behavior);
- The network may shut-down;
- The reactors may work in a suboptimal region.
- **PROBLEM**
 - The reactor network should work within an optimal operating range;
 - Such a range is often narrow and its identification may be difficult.
- SOLUTION
 - A suitable control system must be synthesized and implemented on-line to avoid both shut-down and chaotic behaviors;
 - An advanced control system is highly recommended;
 - Model based control \rightarrow Model Predictive Control, MPC.

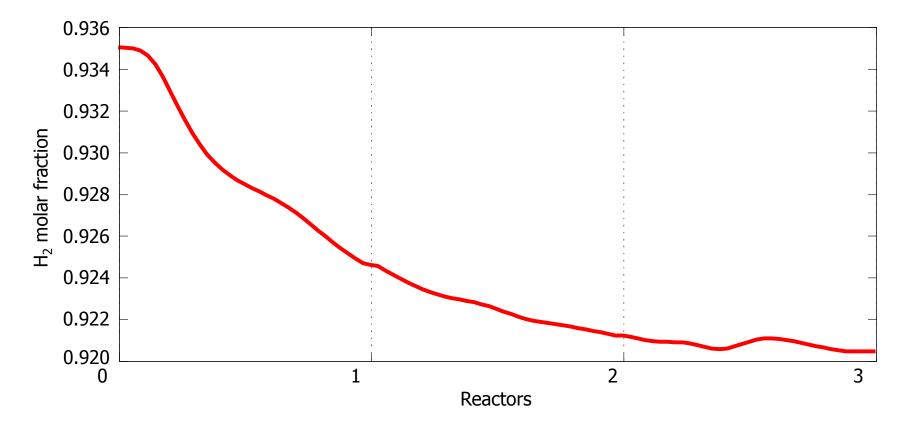
Numerical modeling

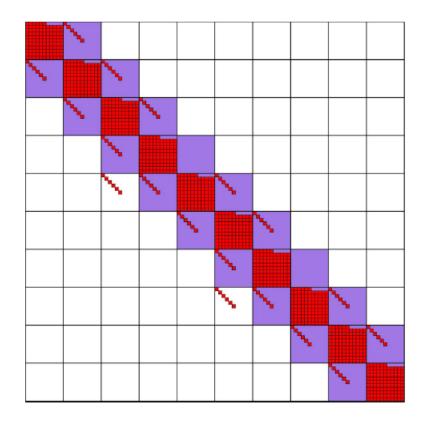
- The model based approach to the control problem calls for the implementation of a **numerical model** of the network that will be used for:
 - 1. Identification of the optimal operating conditions;
 - 2. Control purposes, *i.e.* to predict the future behavior of the system.
- The numerical model is based on a first principles approach:
 - The reactors are continuously evolving (they never reach a steady-state condition) → time derivative;
 - Each PFR reactor must be described spatially \rightarrow spatial derivative;
 - The reacting system is catalyzed (therefore it is heterogeneous). Consequently, an algebraic term is required → PDAE system.
 - The PDAE system is spatially discretized \rightarrow **DAE system**.
 - A total of **1067 differential and algebraic equations** must be solved to determine the dynamic evolution of the network.

Mathematical tricks...

Stoichiometric closure:

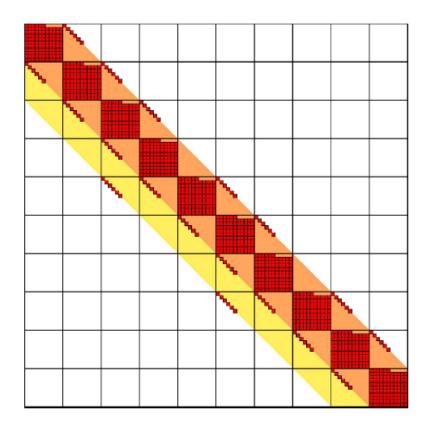






Boolean matrix that shows the presence indexes of the differential-algebraic system

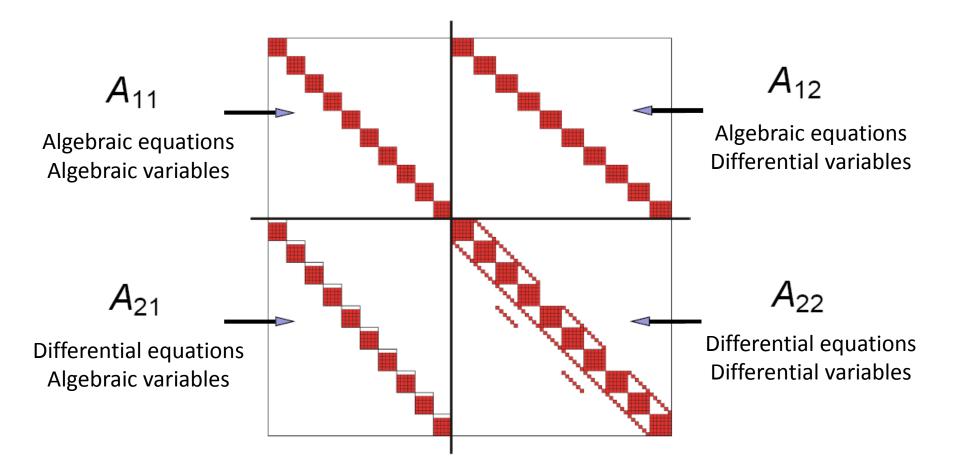
Specifically tailored numerical algorithm for tridiagonal block systems



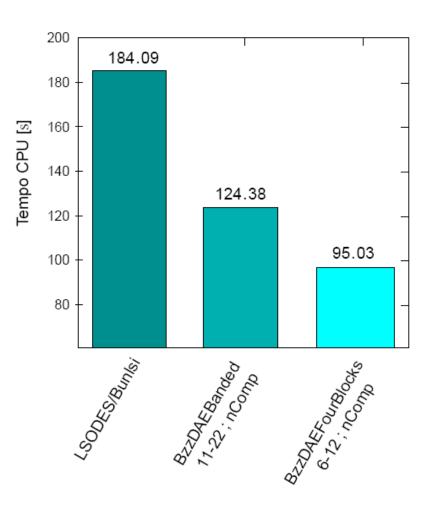
Boolean matrix that shows the presence indexes of the differential-algebraic system

Specifically tailored numerical algorithm for banded systems

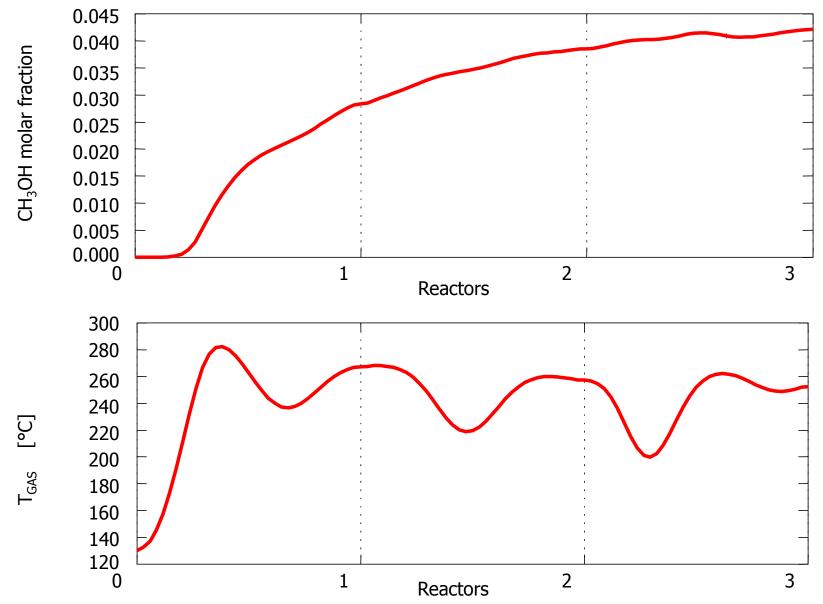
BzzDAEFourBlocks



- Simulation time: 4000 s
- Switch time: 40 s
- Spatial discretization nodes: 97
- Number of equations per node: 11
- Total number of DAEs: 1067
- CPU: Intel[®] Pentium IV 2.4 GHz
- RAM: 512 MB
- OS: MS Windows 7 Professional
- Compiler: COMPAQ Visual Fortran 6.1
 + MICROSOFT C++ 6.0

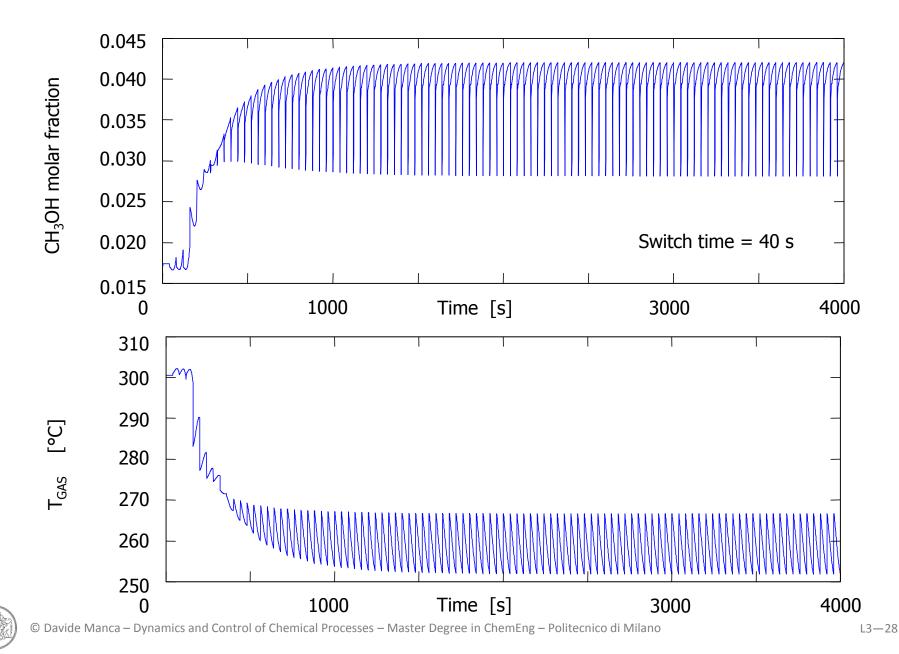


Numerical simulation



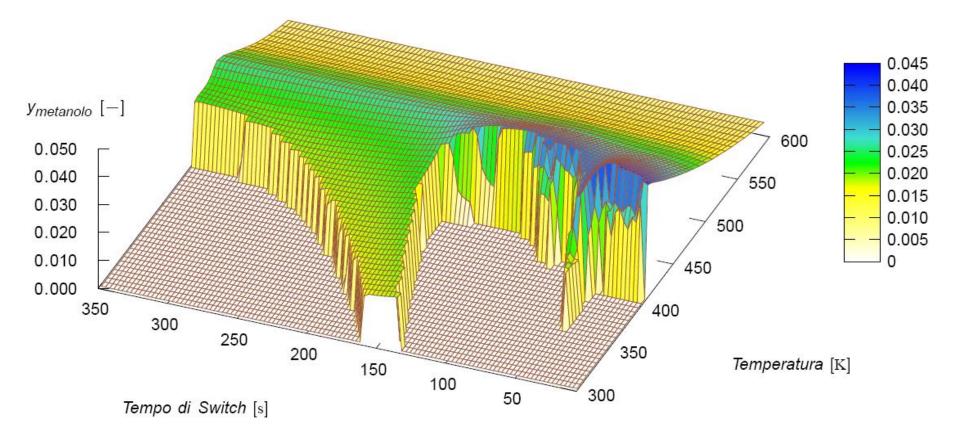
© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano

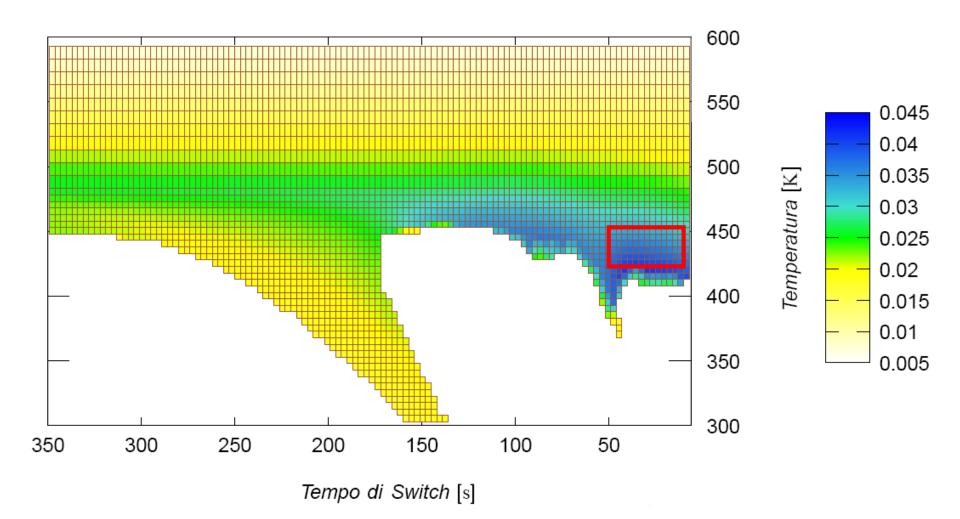
Numerical simulation

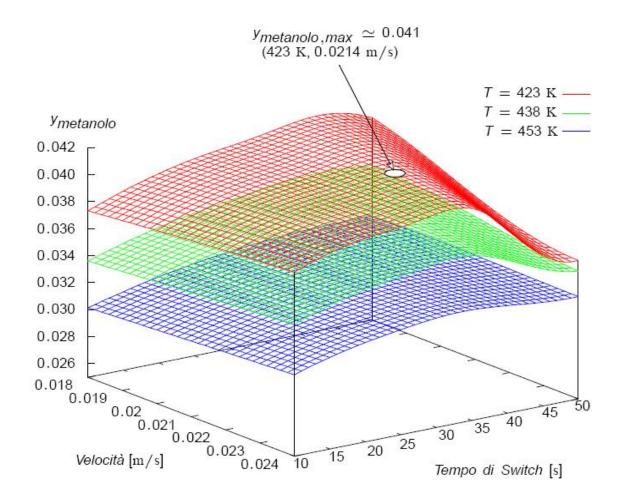


• Variability interval of the analyzed process variables

Variable	Interval	
Inlet gas temperature, T _{in} [K]	300÷593	
Inlet gas velocity, v _{in} [m/s]	0.0189÷0.0231	
Switch time, t _c [s]	1÷350	







Need for speed

- **THE POINT**: to simulate 100 switches of the inlet flow with a switch time of 40 s (total of 4,000 s) the DAE system, comprising 1067 equations, takes about **95 s of CPU time** on a workstation computer.
- **PROBLEM**: the detailed first principles model requires a CPU time that is prohibitive for model based control purposes.
- SOLUTION
 - A high efficiency numerical model in terms of CPU time is therefore required;
 - Such a model should be able to describe the nonlinearities and the articulate profiles of the network of reactors;
 - Artificial Neural Networks, **ANN**, may be the answer.

System identification with ANN

© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano

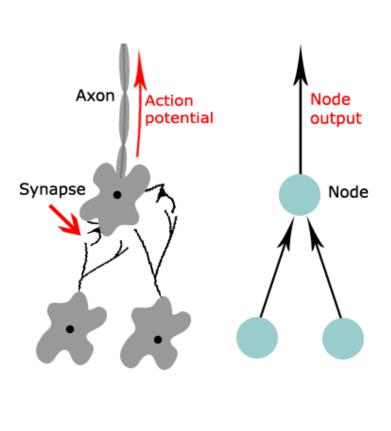
ANN architecture

Input variables	Range	
Inlet gas temperature, T _{in} [K]	423÷453	
Inlet gas velocity, v _{in} [m/s]	0.0189÷0.0231	
Switch time, t _c [s]	10÷50	

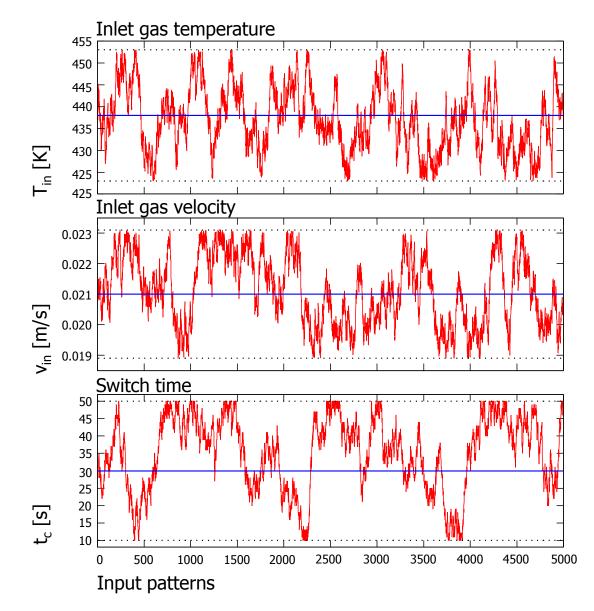
Output variables	
Mean methanol molar fraction, x _{CH3OH}	
Outlet gas temperature, T _{GAS} [K]	

ANN architecture

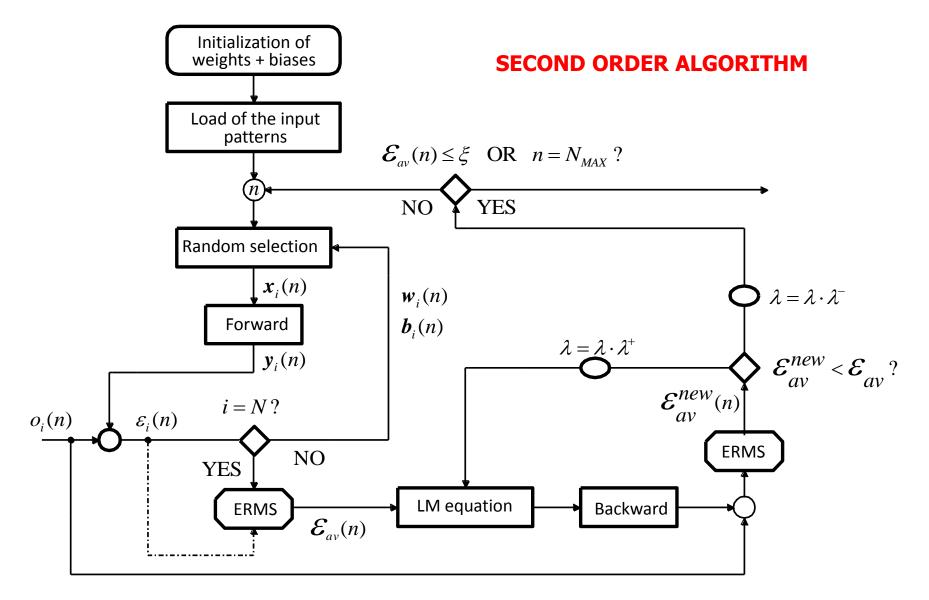
Levels		# of nodes	Activation function	
1	Input	40	Sigmoid	
2	Intermediate 1	15	Sigmoid	
3	Intermediate 2	15	Sigmoid	
4	Output	1	Linear	
# of weights and biases		840 + 31 = 871		
Learning factor, α		0.716		
Momentum, β		0.366		
Linear activation constant, μ		0.275		



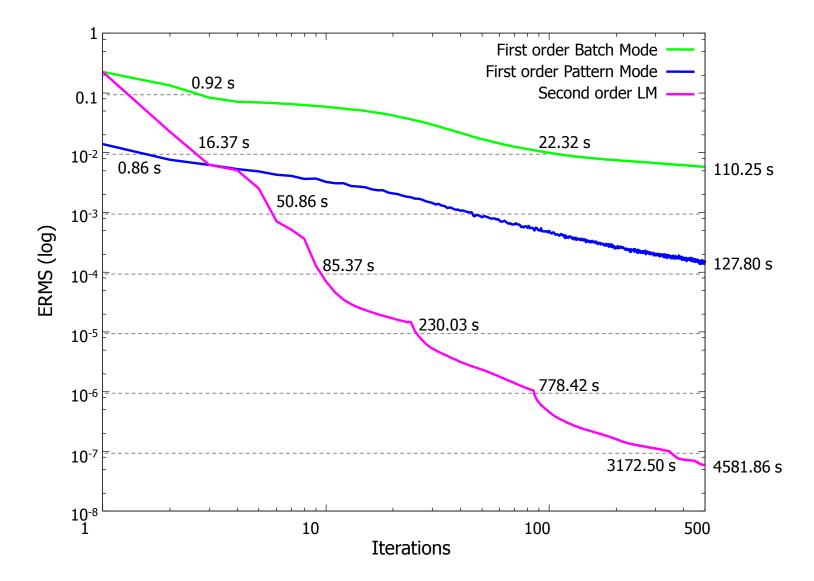
Random input patterns



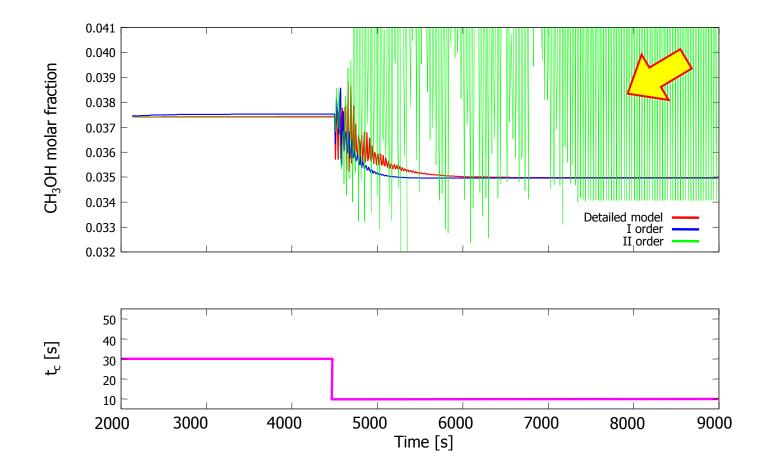
Levemberg Marquard learning algorithm



Algorithms comparison

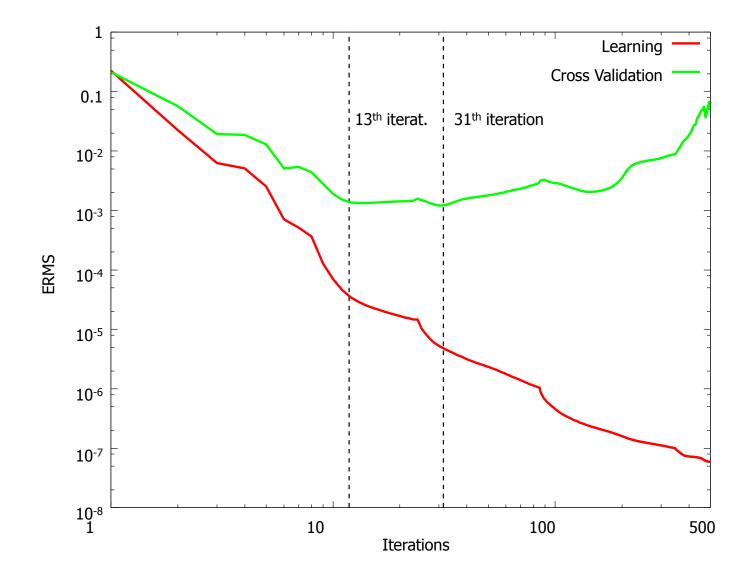


The overlearning problem

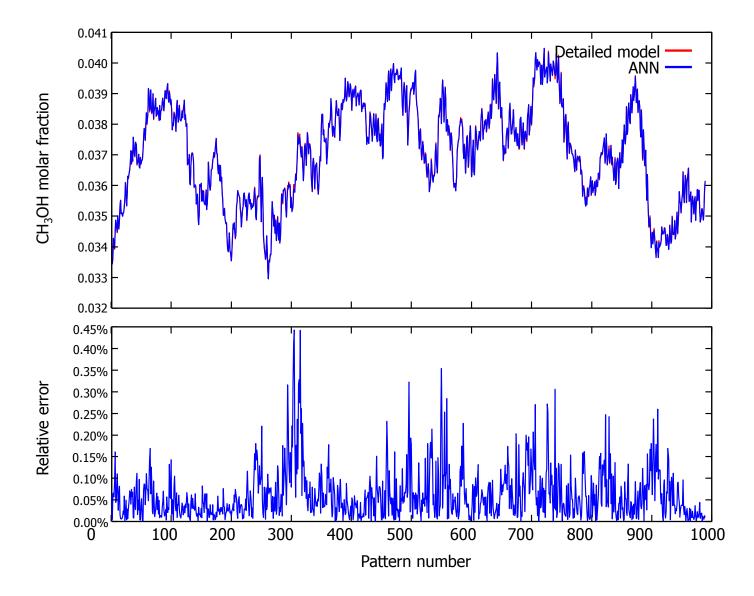


Disturbance on the **switch time** (from 30 to 10 s)

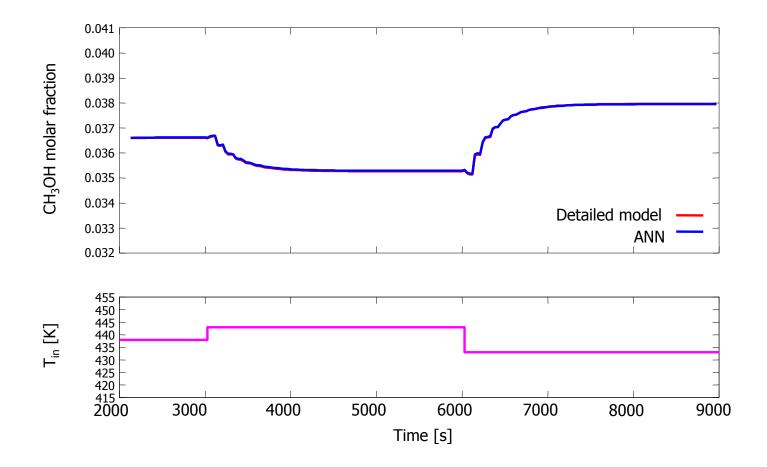
The overlearning problem



ANN cross-validation

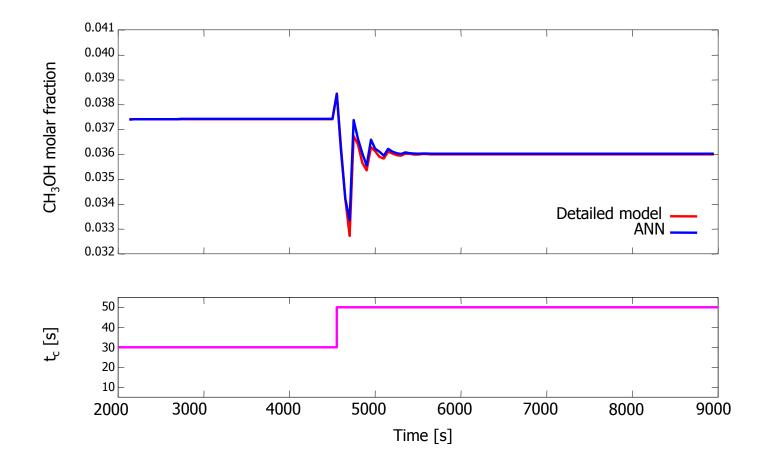


ANN disturbance response



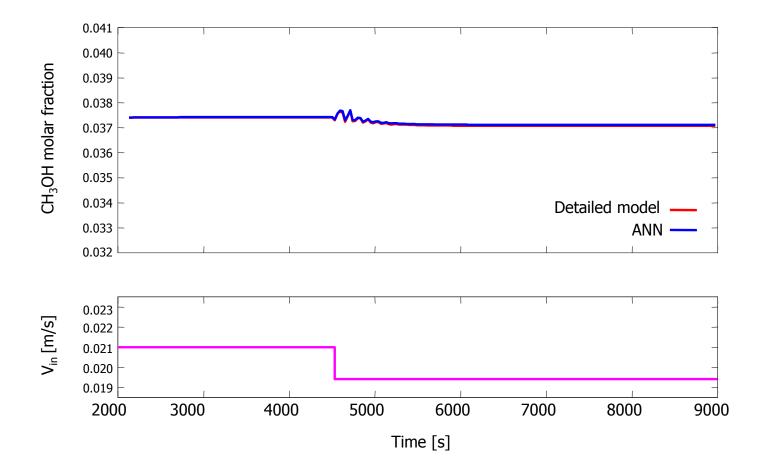
Disturbance on the **inlet temperature** $438 \rightarrow 443 \rightarrow 433$ [K]

ANN disturbance response



Disturbance on the **switch time** $30 \rightarrow 45$ [s]

ANN disturbance response



Disturbance on the **inlet velocity** $0.021 \rightarrow 0.0194$ [m/s]

© Davide Manca – Dynamics and Control of Chemical Processes – Master Degree in ChemEng – Politecnico di Milano

ANN CPU times

	MISO		МІМО
ANN output variables	CH ₃ OH	T _G	CH ₃ OH+T _{GAS}
# of output nodes	1	1	2

# of weights and biases	840+31=871	840+31=871	855+32=887
Jacobian matrix dimensions	4000 x 871	4000 x 871	8000 x 887
CPU time for evaluating J^TJ [s]	17.38	17.37	49.13
Learning procedure CPU time	3h 14 min	3h 13 min	8 h 18 min

CPU time for a single ANN simulation [s]	8.08E-6	8.23E-6	8.86E-6
--	---------	---------	---------

ABOUT 6 ORDERS OF MAGNITUDE IMPROVEMENT BETWEEN THE FIRST PRINCIPLES MODEL AND THE ANN

