Training Simulators for Extreme Environments

Davide Manca
Presentation overview

- Introduction to extreme environments
- Classification and features of extreme environments
- Extreme operations
- Specifications for operator training simulators
- Recommended features of OTS in EE
- Discussion and conclusions
An advanced OTS should allow simulating:

- **Startups, shut downs (programmed and emergency), grade changes**
- **Malfunctions and alarms**
- **Abnormal situations**
- **Accident events**
 - Effects on the equipment
 - Effects on the FOPs
 - Effects on the surrounding environment
- **Interaction with field operated devices**
- **Remote interaction among CROPs and FOPs**
- **Operation at different times of the day**

- **Operation under different weather conditions**
Extreme Environments comprise conditions that are hard to survive for most known life forms.

- Extremely high or low temperature or pressure
- High or low content of oxygen or carbon dioxide in the atmosphere
- High levels of radiation, acidity, or alkalinity
- Absence of water
- Water containing a high concentration of salt
- Presence of sulphur, petroleum, and other toxic substances
Examples of natural extreme environments include:

- geographical poles
- very dry deserts
- volcanoes
- deep ocean trenches
- upper atmosphere
- mount Everest
- outer space and some other planets

The organisms living in these conditions are often very well adapted to their living circumstances, which is usually a result of long-term evolution.
Anthropic extreme environments

Examples of **anthropic** extreme environments include:

- Chemical plants
- Off-shore platforms
- Engine rooms
- Oil tankers
- Merchant ships
- Bathyspheres
- International Space Station

N.B.: Human beings cannot adapt to anthropic extreme environments as a long-term adaptation is not available/feasible.
Extreme features

- High
- Low
- Extremely, very, much, many...
- Absence of, lack of, missing, few, no...
Training targets

CROPs

FOPs
Temperature vs latitude

Air temperature

Sea temperature

Zonal Mean Sea Surface Temperatures
(5 deg Latitude Bands)
Average of Jan 1982 to Dec 2011
Temperature vs elevation/depth

Air temperature

![Diagram showing the temperature distribution with altitude in the atmosphere.]

Sea temperature

![Diagram showing the temperature distribution with depth in the ocean.]

- Thermosphere
- Mesopause
- Mesosphere
- Stratosphere
- Tropopause
- Troposphere

Decrease in temperature °C

- 4°C
- 8°C
- 12°C
- 16°C
- 20°C
- 24°C

Depth in meters

- 0
- 1000
- 2000
- 3000
- 4000
- 5000
- 6000
- 7000

© Davide Manca – Markom 2020 – HSN College, 4-May-2016
Hypoxia and hypercapnia

Effects of Hypoxia

- Low oxygen pressure at high altitude
- The carotid body, a cluster of specialized cells in the carotid artery, detects low oxygen levels in the blood and alerts the brain.
- In response, the brain sends signals to the rest of the body to:
 - Increase breathing rate and constrict vessels in the lung
 - Increase heart rate
 - Dilate peripheral blood vessels in arms, legs, hands, and feet

Main symptoms of Carbon dioxide toxicity

- Visual: - Dimmed sight
- Auditory: - Reduced hearing
- Respiratory: - Shortness of breath
- Muscular: - Tremor
- Central: - Drowsiness, - Mild narcosis, - Dizziness, - Confusion, - Headache, - Unconsciousness
- Skin: - Sweating
- Heart: - Increased heart rate and blood pressure
Noise and silence
Protective measures

- Overalls
- Low temperature clothes
- Thermally controlled overalls
- Breathing masks, air bottles
- Earplugs
- ...

N.B.: protective measures allow living in EE but hamper the operators and may have negative impacts on their efficiency and endurance.
Extreme operations
Extreme operations

- Surge
- Yaw
- Sway
- Roll
- Pitch
- Heave
Issues involved

Consequences of extreme environments:

- Operators are hindered/hampered by protective devices
- Extreme environmental conditions modify the normal operating conditions and call for different, specific, and unconventional operations

Respect to normal operating conditions:

- The time taken to carry out an operation is longer
- The operator has to stand a higher strain to carry out the same operation
- The communication with the control room and other field operators is worsened/hampered
- The time taken to recover from the strain is higher
- The operator endurance is shorter
Call for:

• Specific overalls and protective clothes/devices
 • Sealed overalls, breathing masks, air bottles, protective glasses, gloves, ...

• Specific physical training

• Specific mental training → tailored situation awareness

• Trainers and trainees have to know and experience the effective times, rhythms, and intervals to carry out the operations
Recommended features of OTS in EE

Basic features:

- 3D immersive and stereoscopic Virtual Reality
- 3D sounds effects
- Augmented virtual reality
3D immersive and stereoscopic VR
Augmented Virtual Reality

Status:
Normal condition
Liquid holdup: 0.754 [m]
Advanced features:

• Simulation of **extreme weather conditions**:
 • Temperature, pressure, wind, humidity, frost, ...

• Reproduction of **extreme environmental conditions**:
 • Light, darkness, noise, silence, roll/pitch/yaw, lack of breathable air, toxic substances, ...

• Reproduction of **real stuff**:
 • Stairs, valves, manholes, devices, engines, ...

• **Mixed reality**
Immersive VR headset
Discussion and Conclusions

What should be implemented and is still missing:

• Dedicated training methods for trainees
• Dedicated training of trainers
• Automated performance assessment
• Frequency of training and refresh programs
Operator training simulators for both industrial and maritime extreme environments are challenging tools that call for a systemic and holistic approach to implementation.

Both maritime and industrial sectors would benefit from the availability of **Extreme Training Simulators (ETS)**.

OTS vendors should reflect, discuss, and ponder on the feasibility and opportunity to implement and customize **ETS** according to the client’s requirements.
TOWARDS THE AUTOMATIC MEASUREMENT OF HUMAN PERFORMANCE IN VIRTUAL ENVIRONMENTS FOR INDUSTRIAL SAFETY
S. Colombo, D. Manca, S. Brambilla, R. Totaro, R. Galvagni
http://dx.doi.org/10.1115/WINVR2011-5564

PERFORMANCE INDICATORS FOR TRAINING ASSESSMENT OF CONTROL-ROOM OPERATORS
D. Manca, S. Nazir, S. Colombo
Chemical Engineering Transactions, 26, 285-290, (2012)
http://dx.doi.org/10.3303/CET1226048

THE ROLE OF SITUATION AWARENESS FOR THE OPERATORS OF PROCESS INDUSTRY
S. Nazir, S. Colombo, D. Manca
Chemical Engineering Transactions, 26, 303-308, (2012)
http://dx.doi.org/10.3303/CET1226051

PERFORMANCE INDICATORS FOR THE ASSESSMENT OF INDUSTRIAL OPERATORS
D. Manca, S. Nazir, F. Lucernoni, S. Colombo
Computer Aided Chemical Engineering, 30, 1422-1426, (2012)
http://dx.doi.org/10.1016/B978-0-444-59520-1.50143-3
VIRTUAL REALITY AND AUGMENTED-VIRTUAL REALITY AS TOOLS TO TRAIN INDUSTRIAL OPERATORS
S. Nazir, R. Totaro, S. Brambilla, S. Colombo, D. Manca
Computer Aided Chemical Engineering, 30, 1398-1401, (2012)
http://dx.doi.org/10.1016/B978-0-444-59520-1.50138-X

USE OF VIRTUAL REALITY FOR ANTICIPATION AND REDUCTION OF RISKS IN PROCESS INDUSTRY
S. Nazir, S. Colombo, D. Manca

TOWARDS HOLISTIC DECISION SUPPORT SYSTEMS. INCLUDING HUMAN AND ORGANIZATIONAL PERFORMANCES IN THE LOOP
S. Colombo, S. Nazir, D. Manca
http://dx.doi.org/10.1016/B978-0-444-59507-2.50051-2

VIRTUAL AND AUGMENTED REALITY AS VIABLE TOOLS TO TRAIN INDUSTRIAL OPERATORS
D. Manca, R. Totaro, S. Nazir, S. Brambilla, S. Colombo
http://dx.doi.org/10.1016/B978-0-444-59507-2.50157-8
PERFORMANCE COMPARISON OF DIFFERENT TRAINING METHODS FOR INDUSTRIAL OPERATORS
S. Nazir, A. Gallace, M. Bordegoni, S. Colombo, D. Manca

BRIDGING BETWEEN VIRTUAL REALITY AND ACCIDENT SIMULATION FOR TRAINING OF PROCESS-INDUSTRY OPERATORS
D. Manca, S. Brambilla, S. Colombo
Advances in Engineering Software, 55, 1-9, (2013)
http://dx.doi.org/10.1016/j.advengsoft.2012.09.002

A PLANT SIMULATOR TO ENHANCE THE PROCESS SAFETY OF INDUSTRIAL OPERATORS
D. Manca, S. Colombo, S. Nazir
http://dx.doi.org/10.2118/164992-MS

VIRTUAL REALITY AS EFFECTIVE TOOL FOR TRAINING AND DECISION-MAKING: PRELIMINARY RESULTS OF EXPERIMENTS PERFORMED WITH A PLANT SIMULATOR
S. Colombo, S. Nazir, D. Manca
SPE European HSE Conference and Exhibition, 405-416, (2013)
http://dx.doi.org/10.2118/164993-MS
MINIMIZING THE RISK IN THE PROCESS INDUSTRY BY USING A PLANT SIMULATOR: A NOVEL APPROACH
S. Nazir, S. Colombo, D. Manca
Chemical Engineering Transactions, 32, 109-114, (2013)
http://dx.doi.org/10.3303/CET1332019

TESTING AND ANALYZING DIFFERENT TRAINING METHODS FOR INDUSTRIAL OPERATORS: AN EXPERIMENTAL APPROACH
S. Nazir, S. Colombo, D. Manca
Computer Aided Chemical Engineering, 32, 667-672, (2013)
http://dx.doi.org/10.1016/B978-0-444-63234-0.50112-3

CAN IMMERSIVE VIRTUAL ENVIRONMENTS MAKE THE DIFFERENCE IN TRAINING INDUSTRIAL OPERATORS?
S. Nazir, A. Kluge, D. Manca

EXPERIMENT-BASED DECISION MAKING IN COMPLEX SYSTEMS
S. Colombo, S. Nazir, A. Gallace, D. Manca
Chemical Engineering Transactions, 36, 85-90, (2014)
http://dx.doi.org/10.3303/CET1436015
REFERENCES

PROCEDURE FOR AUTOMATED ASSESSMENT OF INDUSTRIAL OPERATORS
D. Manca, S. Nazir, S. Colombo, A. Kluge
Chemical Engineering Transactions, 36, 391-396, (2014)
http://dx.doi.org/10.3303/CET1436066

HOW DISTRIBUTED SITUATION AWARENESS INFLUENCES PROCESS SAFETY
S. Nazir, L.J.Sorensen, K.I. Overgård, D. Manca
Chemical Engineering Transactions, 36, 409-414, (2014)
http://dx.doi.org/10.3303/CET1436069

ADVANCED APPLICATIONS IN PROCESS CONTROL AND TRAINING NEEDS OF FIELD AND CONTROL ROOM OPERATORS
A. Kluge, S. Nazir, D. Manca
IIE Transactions on Occupational Ergonomics and Human Factors, 2:3-4, 121-136, (2014)
http://dx.doi.org/10.1080/21577323.2014.920437

AUTOMATION IN PROCESS INDUSTRY: CURE OR CURSE? HOW CAN TRAINING IMPROVE OPERATOR'S PERFORMANCE
S. Nazir, A. Kluge, D. Manca
Computer Aided Chemical Engineering, 33, 889-894, (2014)
http://dx.doi.org/10.1016/B978-0-444-63456-6.50149-6
REFERENCES

DISTRIBUTED SITUATION AWARENESS OF INDUSTRIAL OPERATORS: MODELS AND MEASUREMENT METHODS
S. Nazir, L. Sørensen, K. Ivar Øvergård and D. Manca

IMMERSIVE VIRTUAL REALITY FOR DECISION MAKING IN PROCESS INDUSTRY: EXPERIMENT RESULTS
S. Colombo, S. Nazir, D. Manca
http://dx.doi.org/10.2118/164993-PA

MULTI-OBJECTIVE AND SYSTEMATIC PERFORMANCE ANALYSIS OF INDUSTRIAL OPERATORS
S. Nazir, D. Manca, K.I. Øvergård
HFES Europe Chapter Conference on Human Factors in high reliability industries, October 8-10, 2014 Lisbon – Portugal, (2014)

IMPACT OF TRAINING METHODS ON DISTRIBUTED SITUATION AWARENESS OF INDUSTRIAL OPERATORS
S. Nazir, L.J. Sørensen, K.I. Øvergård, D. Manca
http://dx.doi.org/10.1016/j.ssci.2014.11.015
HOW A PLANT SIMULATOR CAN IMPROVE INDUSTRIAL SAFETY
S. Nazir, D. Manca
http://dx.doi.org/10.1002/prs.11714

DISTRIBUTED SITUATION AWARENESS IN NUCLEAR, CHEMICAL, AND MARITIME DOMAINS
S. Nazir, P.V.R. Carvalho, K.I. Overgard, J.O. Gomes, M.C.R. Vidal, D. Manca
http://dx.doi.org/10.3303/CET1543333

THE IMPACT OF TRAINER ON TRAINING TRANSFERABILITY
S. Nazir, K.I. Øvergård, D. Manca
In K.I. Fostervold, S.Å.K. Johnsen, L. Rydstedt and R. G. Watten (Eds.) Creating Sustainable Work Environments.
Lillehammer, 1-4 November 2015, Lysaker, Norway: Norwegian society for ergonomics and human factors,
C2, 5-9, (2015)

SPACE VS. CHEMICAL DOMAINS: VIRTUAL AND REAL SIMULATION TO INCREASE SAFETY IN EXTREME CONTEXTS
I.L. Schlacht, S. Nazir, D. Manca
http://dx.doi.org/10.1016/j.promfg.2015.07.221
Training Simulators for Extreme Environments

Thank you for your attention

davide.manca@polimi.it